• Title/Summary/Keyword: Dry-bulb temperature

Search Result 114, Processing Time 0.027 seconds

Photosynthesis and Growth of Southern-type Garlic (Allium sativum L.) in Response to Elevated Temperatures in a Temperature Gradient Tunnel (온도구배터널 내 상승온도에 의한 난지형 마늘(Allium sativum L.)의 광합성 및 생육 특성의 변화)

  • Oh, Seo-Young;Moon, Kyung Hwan;Song, Eun Young;Shin, Minji;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.250-260
    • /
    • 2019
  • This study assessed clove germination, shoot growth, photosynthesis and bulb development of southern-type garlic (Allium sativum L.) in a temperature gradient tunnel (TGT), to examine the impacts of increases in temperature on the growth of garlic and find a way to minimize them. The temperatures in the middle and outlet of the TGT were 3.2℃ and 5.8℃ higher, respectively, than the ambient temperature at the tunnel inlet. The germination of garlic cloves was late at temperatures of ambient+3℃ (in the middle of the TGT) and ambient+6℃ (at the outlet) than at ambient temperature (at the inlet). However, bolting and the timing of maximum leaf number per plant were faster at ambient+3℃ or +6℃ than at ambient temperature. Shoot growth was generally greater at ambient temperature. Bulb growth did not significantly differ according to cultivation temperatures, but fresh and dry weights were slightly higher at ambient temperature and ambient+3℃ in the late growth stage. The photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E) were higher at ambient+3℃ than at ambient temperature. Furthermore, at ambient+3℃, the net photosynthetic rate (Amax) was high, while the dark respiration rate (Rd) was low. At ambient temperature and ambient+3℃, bulb development was healthier, resulting in better productivity and more commercial bulbs, while at ambient+6℃, the bulbs were small and secondary cloves developed, resulting in low commercial value. Therefore, at elevated temperatures caused by global warming, it is necessary to meet the low-temperature requirements before clove sowing, or to delay the sowing time, to improve germination rate and increase yield. The harvest should also be advanced to escape high-temperature stress in the bulb development stage.

A Study on Prediction of Temperature and Humidity for Estimation of Cooling Load (냉방부하 추정을 위한 온도와 습도 예측에 관한 연구)

  • Yoo, Seong-Yeon;Lee, Je-Myo;Han, Kyou-Hyun;Han, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.394-402
    • /
    • 2007
  • To estimate the cooling load for the following day, outdoor temperature and humidity are needed in hourly base. But the meteorological administration forecasts only maximum and minimum temperature. New methodology is proposed for predicting hourly outdoor temperature and humidity by using the forecasted maximum and minimum temperature. The correlations for normalized outdoor temperature and specific humidity has been derived from the weather data for five years from 2001 to 2005 at Seoul, Daejeon and Pusan. The correlations for normalized temperature are independent of date, while the correlations for specific humidity are linearly dependent on date. The predicted results show fairly good agreement with the measured data. The prediction program is also developed for hourly outdoor dry bulb temperature, specific humidity, dew point, relative humidity, enthalpy and specific volume.

Growth and Fresh Bulb Weight Model in Harvest Time of Southern Type Garlic Var. 'Namdo' based on Temperature (온도에 따른 난지형 마늘 '남도'의 생육과 수확기 구생체중 모델 개발)

  • Wi, Seung Hwan;Moon, Kyung Hwan;Song, Eun Young;Son, In Chang;Oh, Soon Ja;Cho, Young Yeol
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • This study was conducted to investigate optimal temperature of garlic and develop bulb weight model in harvest time. Day and night temperature in chambers was set to $11/7^{\circ}C$, $14/10^{\circ}C$, $17/12^{\circ}C$, $20/15^{\circ}C$, $23/18^{\circ}C$, $28/23^{\circ}C$(16/8h). Bulb fresh and dry weight was heaviest on $20/15^{\circ}C$. In $11/7^{\circ}C$ and $14/10^{\circ}C$, leaf number and total leaf area increased slowly. But in the harvest, leaf number and total leaf area were not significant, except $28/23^{\circ}C$. Models were developed with fresh bulb weight. As a result of analyzing the model, $18{\sim}20^{\circ}C$ certified optimal mean temperature. And the growing degree day base temperature estimated $7.1^{\circ}C$, upper temperature threshold estimated $31.7^{\circ}C$. To verify the model, mean temperature on temperature gradient tunnel applied to the growth rate model. Lineal function model, quadric model, and logistic distribution model showed 79.0~95.0%, 77.2~92.3% and 85.0~95.8% accuracy, respectively. Logistic distribution model has the highest accuracy and good for explaining moderate temperature, growing degree day base temperature and upper temperature threshold.

ANALYTICAL STUDY ON EVAPORATIVE COOLING POTENTIAL AND POWER GAINS OF AIR COMPRESSORS BY INLET FOGGING (입구공기 안개법에 의한 공기압축기의 증발냉각도와 출력이득에 관한 연구)

  • Suryan, Abhilash;Kim, Dong-Sun;Lee, Hae-Dong;Kwon, Joon-Kyeong;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2637-2641
    • /
    • 2008
  • The ever increasing demand for power and the shortages encountered during summer calls for the implementation of strategies for power saving in industry. Inlet fogging of gas turbine engines is quite popular due to the ease of installation and the relatively low initial cost compared to other inlet cooling methods. In the present investigation, a detailed analysis is carried out on the basis of coincident wet bulb and dry bulb temperature data of a compressed air plant from April to October, 2007 to determine the evaporative cooling potential for the period. The power gain that can be obtained by employing inlet fogging of the air compressors is analyzed based on the real climatic data at several sites in Korea. An experimental set-up was constructed and tests were carried out with the standard impaction pin nozzle. The experimental results were found to match with the theoretical calculations.

  • PDF

Effect of Paddy and Upland Conditions on Yield and Storage of Onion Bulbs (논밭 재배지 조건에 따른 양파 채종용 모구의 수량 및 저장력 변화)

  • Cho Sang-Kyun;Lee Eul-Tai;Oh Young-Jin;Choi In-Hu;Kim Young-Jin;Kim Jung-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.401-407
    • /
    • 2006
  • This study was conducted to investigate the effect of onion cultivation under paddy and upland condition on the yield and storage of onion bulbs. In comparison of soil conditions, nitrogen, phosphate, potassium content and average temperature in upland condition were higher than those of paddy condition, but calcium, magnesium, sodium and water content in paddy condition were higher than those of upland condition. The growth of aerial part was better in upland cultivated condition. It showed that bulb formation in paddy cultivated condition was faster during in early growth stage, but was slower during in late growth stage. Average bulb size and weight were higher in upland cultivated condition, but dry weight per 100 g fresh weight and bulb hardness were higher in paddy cultivated condition. Sugar contents, inorganic compounds, nitrogen, phosphate and potassium content of onion were higher in upland cultivated condition, but calcium, magnesium and sodium content of onion were higher in paddy cultivated condition. In distribution of onion bulb size, most of large sized onions were produced in upland cultivated condition. Average bulb production for seed harvesting were $63{\sim}70%$ higher in paddy cultivated condition than that of upland cultivated condition. The rotted rate of onion was about $27.2{\sim}34.6%$ in paddy, $37.5{\sim}51.4%$ in upland cultivated condition respectively, showed favorable result as the difference of $8.7{\sim}24.2%$ in paddy cultivated condition.

An Experimental Study on Thermal and Environmental Characteristics of Various Heating Systems in the Residential House (주거용 건물의 난방 방식별 열적성능 및 실내환경 특성 평가를 위한 실험적 연구)

  • Lee, Choong-Kook;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.121-128
    • /
    • 2005
  • This is about experimental comparison study between convective heating and radiation heating system to use the design criteria for residential house. Experiment was done in EC(environment chamber) under simultaneous outdoor condition for 4 kinds of heating system such as CRHP(Ceiling Radiant Heating Panel), BEHC( Bottom Electric Heating Coil Mat), EFCU( Electric Fan Coil Unit) and CEHU( Convective Electric Heating Unit). Result show that CRHP ,which is radiation heating system, can consume more 23% energy than convective heating system when it is operated by dry bulb temperature but can save 1 ${\sim}$ 10% when operated by glove temperature and 27% when operated by MRT.

  • PDF

Effects on Refrigerant Maldistribution on the Performance of Evaporator (냉매의 불균일한 분배가 증발기의 성능에 미치는 영향)

  • 김창덕;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.230-240
    • /
    • 2004
  • An experimental investigation was conducted to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R22. A comparison was made between the predictions by previously proposed tube-by-tube method and experimental data for the heat transfer rate of evaporator. Experiments were carried out under the conditions of saturation temperature of 5$^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of 27$^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71㎧. Experiment show that air velocity increased by 85.2% is need for T-type distributor with four outlet branches than that of two outlet branches under the superheat of 5$^{\circ}C$, which resulted in air-side pressure drop increase of 130% for T-type distributor with four outlet branches as compared to two outlet branches.

High-temperature drying of Pinus densiflora and Pinus rigida dimension lumber (소나무와 리기다소나무 평소각재(平小角材)의 고온건조(高溫乾燥))

  • Park, Moon-Jae;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-66
    • /
    • 1987
  • Korean red pine (Pinus densiflora S. et. Z.) and pitch pine(Pinus rigida Mill) $5{\times}10cm$ dimension lumber were dried in a kiln providing a cross-circulation velocity of 5 m/sec at dry-and wet-bulb temperatures of 116 and $71^{\circ}C$, followed by 3 hours at 91 and $85^{\circ}C$. Compared to dimension lumber dried lumber were as follows. 1. To dry to 10 percent moisture content, the high-temperatures schedule of Korean red pine and pitch pine lumber took less than one seventh the time required by the conventional kiln drying schedule. 2. High-temperature drying rate and conventional drying rate to 10 percent moisture content of Korean red pine lumber were 2.75 and 0.35%/hr, and those of pitch pine lumber were 3.38 and 0.46%/hr respectively. 3. Compared to lumber of both species on conventional schedule, moisture gradient of high-temperature lumber was greater. 4. Compared to lumber on conventional schedule, maximum surface checking of high-temperature lumber of both species was severer, and maximum end checking of high-temperature lumber of both species was similar to that of lumber on conventional schedule. 5. Compard to lumber on conventional schedule, Korean red pine lumber dried at high temperature showed more honeycombing, but pitch pine lumber dried at high-temperature showed significantly slighter honeycombing. 6. Compared to lumber on conventional schedule, the high-temperature lumber showed less warping lumber of both species. 7. Collapse and casehardening of Korean red pine and pitch pine lumber on both scheules were slight.

  • PDF

Experimental Study on the Determination of Heat Transfer Coefficient for the KURT (KURT 내 열전달계수 결정에 관한 실험적 연구)

  • Yoon, Chan-Hoon;Kwon, Sang-Ki;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.507-516
    • /
    • 2009
  • In cases of high-level radioactive waste repositories, heat load is apparent by radioactive waste decay. The safety of a waste repository would be influenced by changing circumstances caused by heat transfer through rock. Thus, a ventilation system is necessary to secure the waste repository. The first priority for building an appropriate ventilation system is completing a computer simulation research with thermal rock properties and a heat transfer coefficient. In this study, the heat transfer coefficient in KURT was calculated using the measurement of inner circumstance factors that include dry bulb and wet bulb temperature, rock surface temperature, and barometric pressure. The heater that is 2 m in length and 5 kw in capacity heats the inside of rock in the research module by $90^{\circ}C$. As a result of determining the heat transfer coefficient in the heating section, the changes of heat transfer coefficient were found to be a maximum of 7.9%. The average heat transfer coefficient is approximately 4.533 w/$m^2{\cdot}K$.

The Burdens of Occupational Heat Exposure-related Symptoms and Contributing Factors Among Workers in Sugarcane Factories in Ethiopia: Heat Stress Wet Bulb Globe Temperature Meter

  • Mitiku B. Debela;Achenef M. Begosaw;Negussie Deyessa;Muluken Azage
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.325-331
    • /
    • 2023
  • Background: Heat stress is a harmful physical hazard in many occupational settings. However, consequences of occupational heat exposure among workers in a sugarcane factory in Ethiopia are not well characterized. This study aimed to assess the level of occupational heat exposure-related symptoms and contributing factors. Methods: In this cross-sectional study, five workstations were selected for temperature measurement. Heat stress levels were measured using a wet-bulb globe temperature index meter. A stratified random sampling technique was used to select 1,524 participants. Heat-related symptoms were assessed using validated questionnaires. Results: The level of occupational heat exposure was 72.4% (95% CI: 70.2%-74.8%), while 71.6% (95% CI: 69.3%-74.9%) of participants experienced at least one symptom related to heat stress. The most common heat-related symptoms were swelling of hands and feet (78%), severe thirst (77.8%) and dry mouth (77.4%). The identified risk factors were a lack of reflective shields (AOR: 2.20, 95% CI: 1.53, 3.17), not-enclosed extreme heat sources (AOR: 1.76, 95% CI: 1.23, 2.51), a lack of access to shade (AOR: 9.62, 95% CI: 6.20, 14.92), and inappropriate protective clothing provision (AOR: 1.58, 95% CI: 1.27, 2.71). Conclusions: The burden of occupational heat exposure and heat-induced symptoms was high. Lack of reflective shields, the absence of enclosed extreme heat sources, a lack of access to shade, and inappropriate protective clothing provision were considerable attributes of heat stress. Therefore, the use of mechanical solutions to stop heat emissions at their sources and the key factors identified were areas for future intervention.