• Title/Summary/Keyword: Dry-bulb temperature

Search Result 114, Processing Time 0.028 seconds

The Effects of Operational Conditions of Cooling Water System on Energy Consumption for Central Cooling System (냉각수 계통의 운전변수가 중앙냉방시스템의 에너지소비량에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.8-13
    • /
    • 2017
  • The effects of operational conditions of cooling water system on energy consumption for central cooling system are researched by using TRNSYS program. Cooling tower water pump flow rate, cooling tower fan flow rate, and condenser water temperature with various dry-bulb and wet-bulb temperatures are varied and their effects on total and component power consumption are studied. If the fan maximum flow rates of cooling tower is decreased, cooling tower fan and total power consumptions are increased. If the cooling tower water pump maximum flow rates is decreased, chiller and total power consumptions are increased. If condenser water set-point temperature is increased, chiller power consumption is increased and cooling tower fan power consumption is decreased, respectively.

The Influence of Landscape Pavements on the WBGT of Outdoor Spaces without Ventilation or Shade at Summer Midday (조경포장이 옥외공간의 온열쾌적성지수(WBGT)에 미치는 영향 - 통풍과 차광이 배제된 하절기 주간의 조건에서 -)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • The purpose of the study was to evaluate the influence of landscaping pavements on WBGT(Wet-Bulb Globe Temperature) of outdoor spaces that lack ventilation and shade at summer midday. The relative humidity(RH), dry-bulb temperature(DT) and globe temperature(GT) were recorded every minute from June to October 2009 at a height of 1.2m above ten experimental beds with different pavements, by a measuring system consisting of an electric humidity sensor(GHM-15), resistance temperature detector(RTD, Pt-100), standard black globe(${\phi} 150mm$) and data acquisition systems(National Instrument's Labview and Compact FieldPoint). Additionally, the surface dry-bulb temperatures also were recorded and compared. The area of each experimental bed was 1.5m(W)${\times}$2.0m(L) and ten different kinds of pavement were used including grass, grass+cubic stone, grass+porous brick, brick, stone panels, cubic stone, interlocking blocks, clay brick, naked soil, gravel and concrete. To prevent interference from ventilation, a 1.5m height cubic steel frame was established around each bed and each vertical side of the frame was covered with transparent polyethylene film. Based on the records of the hottest period from noon to 3 PM on 26 days with a peak dry-bulb temperature over $30^{\circ}C$ at natural condition, the wet-bulb temperature(WT) and WBGT were calculated and compared. The major findings were as follows: 1. The average surface DT was $40.1^{\circ}C$, which is $9^{\circ}C$ higher than that of the natural condition. The surface DT of the pavements with grass were higher than those of concrete and interlocking block. The peak DT of the surface almost every pavement rose to above $50^{\circ}C$ during the hottest time. 2. The averages of DT, WT and GT were $40.1^{\circ}C$, $27.5^{\circ}C$ and $49.1^{\circ}C$, and the peak values rose to $48.1^{\circ}C$, $45.8^{\circ}C$ and $59.5^{\circ}C$, respectively. In spite of slight differences that resulted according to pavements, no coherent differentiating factor could be found. 3. The average WBGT of grass was the highest at $34.3^{\circ}C$ while the others were similar in the range of around $33{\pm}1^{\circ}C$. Meanwhile, the peak WBGT was highest with stone panel at $47.9^{\circ}C$. Though there were some differences according to pavements, and while grass seemed to be worst in terms of WBGT, it seems difficult to say ablolutely that grass was the worst because the measurement was conducted without ventilation and shade during summer daytime hours only, which had temperatures that rose to a dangerous degree(above $45^{\circ}C$ WBGT), withering the grass during the hottest period. The average WBGT resulted also showed that the thermal environment of the pavement without ventilation and shade were at an intolerable level for humans regardless of the pavement type. In summary, the results of this study show that ventilation and shade are more important factor than pavement type in terms of outdoor thermal comfort in summer daylight hours.

Ecological Characteristics of Lycoris radiata with Habitat Types

  • Lee, Jeom-Sook;Ihm, Byung-Sun;Kim, Ha-Song
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.247-250
    • /
    • 2003
  • The investigation of ecological characteristics of Lycoris radiata was carried out in flooding (site I), half flooding (site II) and dry stands (site III). Seasonal change of air temperature showed similar patterns and that of light intensity showed quite difference among three L. radiata stands. Seasonal change of soil water content showed a great difference among three L. radiata stands. The study area was dominated by Pinus densiflora, P. thunbergii and L. radiata communities. The number of bulb in 1. radiata increased in September with bulb formation and decreased in January. Bulb weight in L. radiata was different from each site. The numbers of blossom were 23, 13 and 9, respectively in site I, II and III. The length of wreath were 17.0, 13.0 and 11.0cm, respectively, the length of stamen were 7.0, 6.4 and 6.5 cm, respectively and the length of stalk were 60.0, 45.0 and 42.0 cm, respectively in site I, II and III. The leaf of L. radiata developed rapidly in site I with sufficient water supply and lower light intensity, the number and the length of rootlets increased considerably in site III with insufficient water supply and higher light intensity, and the ecological characteristics in site II was intermediate between site I and site III. There was no great difference between the numbers of rootlets in site I and site II, which were due to sufficient water supply in two stands.

High-temperature Drying of Southern Pine Lumber by Green sorting (건조전(乾燥前) 선별(選別)에 의한 Southern pine재(材)의 고온건조(高溫乾燥))

  • So, Won-Tek;Taylor, Fred W.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.51-60
    • /
    • 1992
  • This study was performed to investigate the effect of green sorting before drying on the high-temperature drying characteristics of southern yellow pine dimension lumber(2"${\times}$6"${\times}$12'). To test the advantages of weight sorting, green lumber was seperated into heavy(above 55 1b), medium(50-55 1b), and light(below 50 1b)weight classes. Pieces in each weight class were subgrouped into high(above 35%) and low(below 30%) latewood groups. Groups were dried and seperated by a standard commercial high-temperature schedule; dry bulb temperature $245^{\circ}$ F, wet bulb temperature $180^{\circ}$ F, and air velocity 1200fpm. The results obtained were as follows; 1. There was a highly significant correlation between annual rings per inch(X) and percent-latewood(Y). The regression equation was Y=24, 5047+1.3272X. 2. There were highly significant correlations between either annual rings per inch($X_1$) or percent-latewood($X_2$) a.d specific gravity in green wood(Y). Their regression equations were Y=0.4260+0.0081$X_1$ and Y=0.3749+0.0029$X_2$, respectively. 3. Heavier weight charges dried more slowly than lighter weight charges. 4. Board-to-board variation in green or dry moisture content was less for all seperate weight classes than for unseperated control charges. 5. Lower latewood pieces had higher initial moisture content than higher latewood pieces, and then drying time for lower late wood pieces was longer than higher latewood pieces.

  • PDF

Desiccant Dehumidifier Selection Program (데시칸트제습기 선정프로그램)

  • Kim, Hue-Jae;Park, Seung-Tae;You, Kyoung-Rok;Lee, Hyun-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.224-229
    • /
    • 2009
  • Performance curve of the desiccant rotor is an important information when developing and selecting the desiccant dehumidifier. The effective utilization of the energy is major capacity for the system and the desiccant performance curve is a design ability for a designer. By the rotor supply contract with DRI, ECO-DRY programs would be offered. Moreover, it could make remarkable progress in the desiccant system and energy saving. It is good to introduce the programs with the amicable help of DRI.

  • PDF

Small-Capacity Solar Cooling System by Desiccant Cooling Technology (태양열 이용 소용량 제습냉방시스템)

  • Lee, Dae-Young;Kwon, Chi-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

Impact of Elevated Temperature in Growing Season on Growth and Bulb Development of Extremely Early-Maturing Onion (Allium cepa L. cv. Singsingball) (생육기 온도상승이 극조생 양파의 생육 및 구 비대에 미치는 영향)

  • Song, Eun Young;Moon, Kyung Hwan;Wi, Seung Hwan;Kim, Chun Hwan;Lim, Chan Kyu;Oh, Soonja;Son, In Chang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.223-231
    • /
    • 2017
  • This study was conducted to determine the impact of elevated temperature based on climate change scenario on growth and bulb quality of extremely early-maturing onion (Allium cepa L. cv. Singsingball) in the temperature gradient tunnels. There were treated with 3 groups, one is a control group (ambient temperature, mean temperature at $9.8^{\circ}C$), another ambient temperature $+2^{\circ}C$ (mean temperature at $12.0^{\circ}C$), and the other ambient temperature $+5^{\circ}C$ (mean temperature at $14.3^{\circ}C$). Compared with the control, plant height, neck diameter, leaf area, top fresh weight and dry weight were significantly increased at ambient $+2^{\circ}C$ temperature. Bulb diameter and bulb weight was highest at ambient $+2^{\circ}C$ temperature (mean temperature at $12.0^{\circ}C$) during the growth period. Bulb/neck diameter ratio, over 2.0 a good indicator of development of bulb, increased rapidly at ambient $+2^{\circ}C$ temperature. This result suggests that extremely early-maturing onion (Allium cepa L. cv. Singsingball) could maintain the higher productivity and bulb quality at ambient $+2^{\circ}C$ temperature. On the contrary, $5^{\circ}C$ higher than atmospheric temperature shows negative effects on yields under a future climate change scenario.

Air Temperature Decreasing Effects by Shading and Ventilation at Micro-scale Experiment Plots (소공간 실험구의 차광과 통풍에 의한 기온저감 효과)

  • Kim, Hyun-Cheol;Woo, Ji-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.39-48
    • /
    • 2010
  • The purpose of this study was to analyze air temperature decreasing effects by shading and ventilation at micro-scale experiment plots, especially focused on the Wet Bulb Globe Temperature (WBGT) in outdoor spaces. To monitor the time-serial changes of Dry-bulb Temperature (DT), Globe Temperature (GT) and Relative Humidity (RH) in the wind blocking and shading conditions, Two hexahedral steel frames were established on the open grass field, the dimension of each frame was 1.5m(W)${\times}$1.5m(L)${\times}$1.5m(H). Four vertical side of one frame was covered by transparent polyethylene film to prevent wind passing through (Wind break plot; WP). The top side of the other frame was covered with shading curtain which intercept 95% of solar light and energy (Shading plot; SP). And, Another vertical steel frame without any treatment preventing ventilation and sunlight was set up, which represents natural conditions (Control plot; CP). The major findings were as follows; 1. The average globe temperature (GT) was highest at WP showing $50.94^{\circ}C$ and lowest at SP showing $34.58^{\circ}C$. The GT of natural condition (SP) was $42.31^{\circ}C$ locating the midst between WP and SP. The difference of GT of each plot was about $8-16^{\circ}C$, which means the ventilation and shading has significant effect on decreasing the temperature. 2. WP showed the highest average dry-bulb temperature (DT) of $38.41^{\circ}C$ which apparently differ from SP and CP showing $31.94^{\circ}C$ and $33.15^{\circ}C$ respectively. The DT of SP and CP were nearly the same. 3. The average relative humidity (RH) was lowest at WP showing 15.21%, but SP and CP had similar RH 28.79%, 28.02% respectively. 4. The average of calculated WBGT were the highest at the WP ($27.61^{\circ}C$) and the lowest at the SP ($23.64^{\circ}C$). The CP ($25.49^{\circ}C$) was in the middle of the others. As summery, compared with natural condition (CP), the wind blocking increased about $2.11^{\circ}C$ WBGT, but the shading decreased about $1.84^{\circ}C$ WBGT. So It can be apparently said that the open space with much shading trees, sheltering furnitures and well-delivered wind corridor can reduce useless and even harmful energy for human outdoor activity considerably in outdoor spaces.

Study on Control of Thermal Environmental Factors for Improvement of Productivity of Laying Hens in Summer (여름철 산란계사 내 열환경인자 중 제어요소에 관한 연구)

  • Kim, Seong-Wan;Lee, Tae-Hoon;Cha, Gwang-Jun;Gutierrez, Winson M.;Chang, Hong-Hee
    • Journal of agriculture & life science
    • /
    • v.53 no.2
    • /
    • pp.121-129
    • /
    • 2019
  • This study carried out to determine control factors for the improvement of productivity of laying hens suffering heat stress during hot weather. A total of 48,451 ISA Brown layers were housed in a farm located in Gyeongsangnam-do, Republic of Korea. Five thermo-hydrometer loggers were installed inside the house to collect data of dry-bulb temperature and relative humidity. The experiment continued for 81 days when the summer season begins from 19th June to 7th September, 2018. This study analyzed the correlations among layers' production index and daily average, highest, and lowest temperature; daily average, highest, and lowest relative humidity; and daily average, minimum, and maximum THI. The result indicated that feed consumption, hen-day egg production, egg weight, and FCR decreased as the daily average, highest and lowest dry-bulb temperature and THI rise (p<0.01). On the other hand, water intake increased as the daily average, highest and lowest dry-bulb temperature and THI rise (p<0.001). The relative humidity was not considered to have direct correlations to the layers' production index (p>0.05). However, it was noticeable that the mortality did not have significant relations with daily average and highest temperature; THI; or daily average, highest and lowest relative humidity while it was relevant to the daily lowest temperature and THI (p<0.05). In conclusion, to enhance the productivity of laying hens in a hot climate, it is recommended that daily average, highest, and lowest dry-bulb temperature and THI are maintained as low as possible. Especially, the daily lowest temperature is needed to lower to 20℃, which is the lowest critical temperature for layers.

Program Development for the Prediction of Cooling Tower Performance (냉각탑 성능 예측을 위한 프로그램 개발)

  • Jung, Jaehyung;Jung, Jaihyun;Choi, Young Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.3
    • /
    • pp.130-136
    • /
    • 2014
  • The present study is performed to set up the framework of cooling tower performance predictions. The performance of mechanical forced draft cooling tower is directly related to the state of a nuclear power plant system, such as the condenser and evaporator. The main parameters related to the state of systems are as follows : wet bulb temperature, dry bulb temperature and absolute humidity. The performance evaluation of cooling tower must be considered at the power plant design. In this study, the toolkit developed by the American Cooling Tower Industry association (CTI) has been used for the framework construction. In order to validate the framework, it is being applied to the cooling tower constructed for the U.S. Nuclear Power Plant. The test results have shown good agreements with the cold water temperature on the cooling tower performance curves provided by manufacturers.