• 제목/요약/키워드: Dry wall

검색결과 315건 처리시간 0.022초

Comparison of Rheological Properties of Powder Chlorella sp. Cultivated in Fermentor and Pond

  • Kang, Ki-Rim;Lee, Chung-Yung-J.;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.740-745
    • /
    • 2002
  • The current study was conducted to identify the differences in the rheological properties of Chlorella sp. powder cultured in a fermentor and in a pond-like environment. Cells. cultured in the same media were harvested and spray dried. The biomass yield from the fermentor culture was 4.7% (dry basis), while that from the pond was 4.3% (dry basis). Measurements of the loose bulk density, tapping test, Hausner's ratio, and compressibility test all revealed differences between the rheological properties of the Chlorella sp. from the two cultivation systems. Although both the fermentor and pond cultured Chlorella sp. showed the same angle of repose, the mean size of the cells was 2.26 $\mu\textrm{m}$ and 2.89 $\mu\textrm{m}$, respectively. The weight of the Chlorella sp. tablets cultured in the fermentor and pond was 0.663 g/tablet and 0.593 g/tablet, respectively, while the friability of the tablets was 21% and 41%, respectively. Observation by Transmission Electron Microscope (TEM) showed that the cell wall of the Chlorella sp. cultured in the fermentor was thinner and more spherical than that cultured in the pond, thereby providing the main characteristic rheological properties of the powder.

An Experimental Study for Basic Properties of Mortar Applied PC Panels by PVA and Nylon Fiber Ratio (PVA 및 나일론 섬유 혼입률에 따른 PC 패널용 모르타르의 기초 물성에 관한 실험적 연구)

  • Lee, Jae-Hyun;Song, Young-Chan;Kim, Yong-Ro;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.137-140
    • /
    • 2009
  • Nowadays, the high performance composite materials are famous for the new construction materials as the construction buildings are bigger and higher. Out of them of all, the fiber reinforced concrete and mortar have been studied to develop and strengthen the performances of concrete, such as tensile strength, durability and the resistibility of crack. Also, it is considered that precast concrete is important alternatives of dry process for saving time, upgrading the material's quality and the productivity. Thus, PC panel is being produced for the use of dry wall as well as exterior finishing materials and it requires lots of tests and studies to be conducted to meet the various functional conditions. According to this study, it is considered that PVA fiber might be more effective than nylon fiber for developing the exterior PC panels.

  • PDF

Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil

  • Zhao, Xiaoqing;Zhao, Gui;Li, Jiawei;Zhang, Peng
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.307-314
    • /
    • 2019
  • Light construction waste (LCW) particles are pieces of light concrete or insulation wall with light quality and certain strength, containing rich isolated and disconnected pores. Mixing LCW particles with soil can be one of the alternative lightweight soils. It can lighten and stabilize the deep-thick soft soil in-situ. In this study, the unconfined compressive strength (UCS) and its mechanism of Construction Waste Stabilized Lightweight Soil (CWSLS) are investigated. According to the prescription design, totally 35 sets of specimens are tested for the index of dry density (DD) and unconfined compressive strength (UCS). The results show that the DD of CWSLS is mainly affected by LCW content, and it decreases obviously with the increase of LCW content, while increases slightly with the increase of cement content. The UCS of CWSLS first increases and then decreases with the increase of LCW content, existing a peak value. The UCS increases linearly with the increase of cement content, while the strength growth rate is dramatically affected by the different LCW contents. The UCS of CWSLS mainly comes from the skeleton impaction of LCW particles and the gelation of soil-cement composite slurry. According to the distribution of LCW particles and soil-cement composite slurry, CWSLS specimens are divided into three structures: "suspend-dense" structure, "framework-dense" structure and "framework-pore" structure.

Plant Cell-Wall Degradation and Glycanase Activity of the Rumen Anaerobic Fungus Neocallimastix frontalis MCH3 Grown on Various Forages

  • Fujino, Y.;Ushida, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권5호
    • /
    • pp.752-757
    • /
    • 1999
  • Studies were made of digestion of timothy (Pheleum pretense) hay, tall fescue (Festuca elatior) hay, and rice (Oryza sativa) straw in pure cultures of rumen anaerobic fungus, Neocallimastix frontails MCH3. The fungus was inoculated on ground forages (1%, w/v) in an anaerobic medium and incubated at $39^{\circ}C$. Incubation was continued for 24, 48, 72 and 96 h. The losses of dry matter, xylose and glucose of forage during incubation were determined at the end of these incubation periods. Xylose and glucose were considered to be released from xylan and cellulose, respectively. The digested xylan to digested cellulose (X/C) ratios of the substrate were calculated. Xylanase and carboxymethyl cellulose (CMCase) of culture supernatant and residual substrate was measured at the same time. The X/C ratios in the cultures on timothy hay and rice straw were greater than 0.5 in the first 24-h incubation period. The values were smaller than 0.3 in tall fesque. The ratio of xylanase activity to that of CMCase in the first 24-h incubation period correlated well with the traits in X/C ratio. However xylanase activity was still superior to CMCase in the following incubation period (48 to 96 h), although the glucose (designated as cellulose) was more intensively digested than xylose (designated as xylan). The production of these polysaccharidases appeared to correlate with substrate cell-wall sugar composition, xylose to glucose ratios, at the beginning of fast growing period.

Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation (발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석)

  • Chung Jae Hwa;Seo Seok Bin;Kim Jong Jin;Cha Dong Jin;Ahn Dal Hong
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF

Cell Wall Deterioration of the Tripitaka Koreana Wooden Plates (팔만대장경판의 세포벽 열화)

  • Park, So-Yoon;Kang, Ae-Kyung;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권2호
    • /
    • pp.55-60
    • /
    • 1996
  • Tripitaka Koreana were made during Coryo Dynasty from 1236 to 1251 A.D. Buddhist scriptures were engraved on 81.340 wooden plates. Some plates were varnished with Rhus lacquer, but most of them were uncoated. Macroscopically, most of the plates appeared intact due to the storage in a well-ventilated wooden house. Because, they were irregularly used for printings with ink, it can be assumed that they were repeatedly exposed to ink-water and drying processes. The present were made to examine the changes of wood cell structures occurred during long-term aging deterioration processes in these dry archaeological wooden plates. Light, scanning and transmission electron microscopes were employed for this study. Wedge-shaped cracks and delamilations were found from the lumen side toward the compound middle lamellae and they progressed toward primary or secondary walls. A large amount of hypae in vessels and the degradation of vessel-ray pit walls by the fungal hyphae were observed. When compared to the recent wood, the birefringence of wood fibers was considerably lower or completly disappeared, suggesting the degradation of crystalline cellulose in these wood samples. The degradation of the cell wall could be also revealed the calculation of crystallinity with X-ray diffraction and the size of crystalline region was estimated.

  • PDF

Collection characteristics of wet-type cyclone with wall cavity for air pollutants removal of marine diesel engines (선박 대기오염 저감을 위한 벽면 캐비티 적용 습식 사이클론의 집진특성)

  • Yoa, Seok-Jun;Kwon, Jun-Hyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제50권2호
    • /
    • pp.185-192
    • /
    • 2014
  • The main object of this study was to investigate the collection characteristics of wet-type cyclone with wall cavity. The experiment was executed to analyze the characteristics of pressure drop and collection efficiency for the present system with the experimental parameters such as water spray, water spray type, inlet velocity etc. In results, for the present system of wet-type, the pressure drop represented 35 mm $H_2O$, while in dry-type 33 mm $H_2O$ showing lower 6% at $v_{in}=21m/s$. In case of $v_{in}=21m/s$ and water spray 200 mL/min, the collection efficiency of the present system became significantly higher as 96.8% comparing to that of the conventional wet-type scrubber. Additionally, for 200 mL/min, $SO_2$ removal efficiencies decreased with the increment of inlet velocity representing 75.0, 62.5, 50.0%, at $v_{in}=6,9,12m/s$, respectively.

THERMAL AND STRUCTURAL ANALYSIS OF CALANDRIA VESSEL OF A PHWR DURING A SEVERE ACCIDENT

  • Kulkarni, P.P.;Prasad, S.V.;Nayak, A.K.;Vijayan, P.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.469-476
    • /
    • 2013
  • In a postulated severe core damage accident in a PHWR, multiple failures of core cooling systems may lead to the collapse of pressure tubes and calandria tubes, which may ultimately relocate inside the calandria vessel forming a terminal debris bed. The debris bed, which may reach high temperatures due to the decay heat, is cooled by the moderator in the calandria. With time, the moderator is evaporated and after some time, a hot dry debris bed is formed. The debris bed transfers heat to the calandria vault water which acts as the ultimate heat sink. However, the questions remain: how long would the vault water be an ultimate heat sink, and what would be the failure mode of the calandria vessel if the heat sink capability of the reactor vault water is lost? In the present study, a numerical analysis is performed to evaluate the thermal loads and the stresses in the calandria vessel following the above accident scenario. The heat transfer from the molten corium pool to the surrounding is assumed to be by a combination of radiation, conduction, and convection from the calandria vessel wall to the vault water. From the temperature distribution in the vessel wall, the transient thermal loads have been evaluated. The strain rate and the vessel failure have been evaluated for the above scenario.

Utilization of Liquid Waste from Methane Fermentation as a Source of Organic Fertilizer -II. Effect of Liquid Waste on Chemical Components, Digestible Dry Matter and Net Energy of Pasture Mixtures (메탄발효폐액(醱酵廢液)의 비료화(肥料化)에 관(關)한 연구(硏究) -II. 폐액시용(廢液施用)이 목초(牧草)의 화학성분(化學成分), 가소화건물(可消化乾物) 및 Net Energy에 미치는 영향(影響))

  • Shin, Jae-Sung;Kim, Jeong-Gap;Lim, Dong-Kyu;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제20권2호
    • /
    • pp.147-151
    • /
    • 1987
  • This study was conducted to evaluate the effect of the liquid waste from methane fermentation on chemical components, digestible dry matter and net energy of pasture mixtures of orchard grass, tall fescue, Kentucky bluegrass and ladino clover. The total crude proteins and crude ashes increased with the application of liquid waste, but N-free extracts decreased somewhat and it didn't affect the content of crude fat and crude fiber. Amounts of neutral detergent fiber and acid detergent fiber increased with increasing application of liquid waste and the content of cellulose in cell-wall constituents decreased, but hemicellulose increased. The digestible dry matter was produced 405 kg/10a at optimum application of 42 MT/10a liquid waste compared to NPK check plot of 233 kg/10a. The starch value and net energy lactation were 291.3 KStE and 3450 MJ-NEL respectively indicating that the optimum application of liquid waste increased their values.

  • PDF

Effect of Organic Soil Conditioner Ratio on the Soil Moisture Content and Growth of Cotoneater horizontalis in the Container Type for Wall-Planting under Non-irrigation (무관수 용기형 벽면녹화에서 유기질 토양개량제가 토양수분함량과 홍자단의 생육에 미치는 영향)

  • Ju, Jin-Hee;Lee, Sun-Young;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • 제22권1호
    • /
    • pp.17-23
    • /
    • 2013
  • In order to evaluate the effect of various organic soil conditioner ratios on the soil moisture content and growth of Cotoneaster horizontalis, a container type for wall-planting experiment was conducted in a greenhouse at Konkuk University under non-irrigation. The experimental planting grounds were prepared with different organic soil conditioner ratios ($A_1L_0$, $A_8L_1$, $A_4L_1$ $A_2L_1$ and $A_1L_1$), and a drought-tolerant ornamental variety of Cotoneaster horizontalis was planted. The change in soil moisture content, plant height, number of branches, number of dead leaves, number of leaves, number of shoots, length of node, length of leaf, width of leaf, root-collar caliper, chlorophyll content, and survival rate were investigated, from April to Jun 2010. The results of soil moisture content measurements were analyzed with weight units in the container type for wall-planting during the dry summer season. The soil moisture contents were significantly enhanced in the container type for wall-planting in increasing order as the amount of soil conditioner level was increased ($A_1L_1$ > $A_2L_1$ > $A_4L_1$ > $A_8L_1$ > $A_1L_0$). Compared to the control treatment application (amended soil with 100% + organic soil conditioner 0%), the highest plant growth was observed in the treatment of $A_1L_1$ application (amended soil with 50% + organic soil conditioner 50%). However, the differences between the organic soil conditioner ratio treatments of $A_1L_1$, $A_4L_1$, and $A_8L_1$ organic soil conditioner application were mostly not significant. The survival rate increased with the increasing application of organic soil conditioner, but in the control treatment application all the plants died. The experimental results from clearly demonstrated that the organic soil conditioner improved the survival rate more than the growth of Cotoneaster horizontalis. Therefore, Cotoneaster horizontalis is expected to be a highly valuable shrub for green wall systems, when considered for us in integration system or for increasing soil water contents in planting grounds.