• Title/Summary/Keyword: Dry mortar

Search Result 145, Processing Time 0.026 seconds

The Effect of Dry Environment on Strength of Cement Mortar Immediately after Casting (성형직후 건조환경이 시멘트 모르터의 강도에 미치는 영향)

  • 오무영;김준희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.61-72
    • /
    • 1991
  • This study was carried out to research the strength drop of concrete in dry environment. The mixing ratio of cement-fine aggregate was 1: 1, 1 : 2, 1: 3 and 1 : 4. The curing was compared standard curing with dry curing immediately after casting. It is analysis of strength change by water-proof mixing. The curing age of cement mortar was 3days, 7days, l4days and 28days. The result obtained from this study are summarized as follows. 1. The compressive and bending strength change by increasing the curing age, dry curing mortar the increasing rate of strength was decreased than standard curing mortar. 2. The compressive and bending strength change in early curing, strength difference between standard curing mortar and dry curing motar was gradually closed by increasing the W/C. 3. The dry curing mortar was decreased than standard curing mortar in decreasing rate of compressive and bending strength by increasing the W/C. 4. The compressive strength of water-proof mortar in early curing, liquid water-proof mortar was shown high strength in dry curing than standard curing. The powder and liquid water-proof mortar have a small effect in dry environment. The liquid water-proof mortar was high strength without relation change of curing age in dry environment than standard curing. 5. The compressive strength of liquid water-proof mortar in poverty mix, dry curing was shown high strength than standard curing. 6. The bending strength was increased than compressive strength by decreasing the volume of cement in early curing. The increasing rate of bending strength was decreased to compressive stength by increasing the curing age.

  • PDF

Experimental study on Properties of Dry Shrinkage Deformation of Floor Dry-mortar with Alpha-hemihydrate Gypsum (알파반수석고를 활용한 바닥용 건조 모르타르의 수축변형 특성에 관한 실험적 연구)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Jung-Hyun;Han, Sang-Hyu;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.158-159
    • /
    • 2014
  • In general, the shrinkage occurring in the floor mortar is large the influence by the dry shrinkage. In order to reduce the cracks occurring in the floor mortar, studies of physical methods are often performed, but these methods is difficult to prevent cracking of the floor mortar essentially. Therefore, in this study, the dry shrinkage properties of floor mortar of gypsum and red clay type using alpha-hemihydrate gypsum had been evaluated. The experimental variables were cement mortar(CM), gypsum mortar(GM), red-clay mortar(RM), the evaluation items was conducted experiment to evaluate the setting time, the compressive strength, drying shrinkage cracks, the dry shrinkage. As a result, it was confirmed that condensation time of GM is shorter that that of CM, and GM satisfied the compressive strength of the floor mortar standard. Also shrinkage deformation of GM reduced more than the CM.

  • PDF

A Study on the Dry-Shrinkage Properties For Floor Mortar With Crack-Reducing (균열저감형 바닥마감전용 모르터의 건조수축특성 연구)

  • 이종렬;이웅종;채재홍;박경상;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.175-180
    • /
    • 1999
  • The heating system of korea apartment house is called Ondol. The surface finishing mortar of this floor system typically used the cement based mortar, where the surface finishing mortar easily appears the crack. To order to crack control, the cement that added expansive additive used to reducing dry-shrinkage. For the surface finishing mortar, the types of shrinkage is known as plastic shrinkage, dry-shrinkage and autogenous This experimental study is to investigate the difference on dry-shrinkage of the cement that added expansive additives and OPC. The test method is varied the ration of water/cement (W/C) and the ratio of sand/cement(S/C). For OPC, The increase of the ratio of S/C is reduced dry-shirnkage but for the cement that added expansive additives, the increase of the ratio of S/C is augmented dry-shrinkage For OPC, The increase of the ratio of W/C is augmented dry-shrinkage but for the cement that added expensive, the increased of the ratio of W/C is reduced dry-shrinkage.

  • PDF

Research on the quality characteristics of each type of floor dry mortar (바닥용 건조 시멘트 모르타르 종류별 품질특성에 관한 연구)

  • Lee, Ji-Hwan;Kim, Jin-Sik;Kim, Hye-Won;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.157-158
    • /
    • 2022
  • A problem arose about the lack of strength of dry mortar for flooring. To solve the problem of lack of strength, a high-strength dry mortar was applied. However, problems arose about the increase in the amount of cracks. It is necessary to analyze the causes of the increase in the amount of cracking in high-strength dry mortar and take countermeasures.

  • PDF

Quality of Dry Cement Mortar for Floor Heating Depending on Water-to-Dry Mortar Rutio (난방을 위한 바닥용 건조 시멘트 모르타르의 혼합수량비 변화에 따른 품질 특성)

  • Park, Sang-Jun;Hwang, Yin-Seong;Lee, Gun-Cheol;Kim, Jong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.181-188
    • /
    • 2021
  • In this study, the various performance of dry cement mortar for Korean floor heating system depending on water-to-dry mortar ratios (W/DM) applied in project site was evaluated. According to the experiment conducted, the importance of mixing water for dry cement mortar was revealed by resultant performance or quality of the dry cement mortar for floor finishing by changing W/DM controlled in project site by workers. As the general trend, the flow was increased, and the unit volume weight was decreased with increasing W/DM. Additionally, compressive strength and drying shrinkage were significantly influenced by W/DM. Hence, it can be stated that the adding water for dry cement mortar should be managed precisely since excessively increased W/DM for workability improvement can cause performance degradation of floor mortar with the failures such as excessive bleeding, and severe segregation during the fresh state. As a summary of the study, to achieve a desirable performance of dry cement mortar, approximately 20 % of W/DM can be suggested to be managed in project site.

Mechanical and durability properties of fluoropolymer modified cement mortar

  • Bansal, Prem Pal;Sidhu, Ramandeep
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.317-327
    • /
    • 2017
  • The addition of different types of polymers such as SBR, VAE, Acrylic, etc. in concrete and mortar leads to an increase in compressive, tensile and bond strength and decrease in permeability of polymer modified mortar (PMM) and concrete (PMC). The improvement in properties such as bond strength and impermeability makes PMM/PMC suitable for use as repair/retrofitting and water proofing material. In the present study effect of addition of fluoropolymer on the strength and permeability properties of mortar has been studied. In the cement mortar different percentages viz. 10, 20 and 30 percent of fluoropolymer by weight of cement was added. It has been observed that on addition of fluoropolymer in mortar the workability of mortar increases. In the present study all specimens were cast keeping the workability constant, i.e., flow value $105{\pm}5mm$, by changing the amount of water content in the mortar suitably. The specimens were cured for two different curing conditions. Firstly, these were cured wet for one day and then cured dry for 27 days. Secondly, specimens were cured wet for 7 days and then cured dry for 21 days. It has been observed that compressive strength and split tensile strength of specimens cured wet for 7 days and then cured dry for 21 days is 7-13 percent and 12-15 percent, respectively, higher than specimens cured one day dry and 27 days wet. The sorptivity of fluoropolymer modified mortar decreases by 88.56% and 91% for curing condtion one and two, respectively. However, It has been observed that on addition of 10 percent fluoropolymer both compressive and tensile strength decreases, but with the increase in percentage addition from 10 to 20 and 30 percent both the strengths starts increasing and becomes equal to that of the control specimen at 30 percent for both the curing conditions. It is further observed that percentage decrease in strength for second curing condition is relatively less as compared to the first curing condition. However, for both the curing conditions chloride ion permeability of polymer modified mortar becomes very low.

Effect of Curing Conditions on Compressive Strength of Dry Mortar for Floor (양생 조건이 바닥용 건조 모르타르의 압축강도에 미치는 영향)

  • Jung, Yong;Kim, Du-Hyouk;Park, Chang-Hwan;Cho, Sung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.377-378
    • /
    • 2023
  • This study examined the effect of curing conditions on the compressive strength of dry mortar for floor. The compressive strength according to the relative humidity during curing was compared, and the influence of expansive additives on compressive strength under water curing was reviewed. As a result, low relative humidity conditions during curing was not effective in improving the compressive strength of dry mortar for floor, and it was judged that the continuous hydration reaction insufficient due to lack of the moisture supply. In order to improve compressive strength, high relative humidity maintenance was found to be an important factor. However, under water curing conditions, the compressive strength has decreased as a result of continuous volume expansion due to the use of the expansive additives.

  • PDF

Sensory Evaluation of Quality and Constructability of Cement Mortar for Tile Direct Setting Method Depending on Mix Proportions (타일 떠붙임 시멘트 모르타르의 배합비 변화에 따른 품질 특성 및 시공성에 대한 관능 평가)

  • Hwang, Yin-Seong;Ki, Tae-Kyoung;Han, Dong-Yeop;Noh, Sang-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.11-19
    • /
    • 2021
  • The aim of the research is providing a fundamental data on quality and constructability of direct tile setting method depending on various cement to sand ratio for tiling dry cement mortar. A large number of tile setting failures reported is related with the cement mortar and its construction for tiling. Because of different materials of tiles, the properties of tiling dry cement mortar, an adhesive for tiling, can influence on quality and constructability of tiling differently. Practically, the easiest way of controlling the properties of the tiling dry cement mortar is to control the proportion of cement and sand. Hence, in this research, sand to cement ratio (S/C) was controlled. Since there is no standarized method on evaluating performance of dry cement mortar for tiling, a several sensory evaluation methods were suggested and executed. According to the experiments conducted in this research, the adhesive performance of cement mortar for tiles can be different depending on the sides such as tile and substrate. Additionally, depending on S/C, finishability, initial adhesive performance, and tile shifting resistance can be changed for ceramic tile. Therefore, under the conditions of this research, about 5 of S/C can be recommended for appropriate performace of tiling dry cement mortar.

Monitoring of Corrosion Rates of Carbon Steel in Mortar under a Wet-Dry Cyclic Condition

  • Kim, Je-Kyoung;Kang, Tae-Young;Moon, Kyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.179-183
    • /
    • 2007
  • The corrosion behavior of metal covered with mortar under a wet-dry cyclic condition were investigated to apply for the measurement of corrosion rates of reinforcing steel in concrete structure. The carbon steel in mortar having t=3 mm cover thickness was exposed to the alternate condition of 6 h immersion in chloride containing solution and 18 h drying at $25^{\circ}C$ and 50%RH. The electrochemical phenomena of a carbon steel and mortar interface was explained by an equivalent circuit consisting of a solution resistance, a charge transfer resistance and a CPE(Constant Phase Element). The corrosion rates were monitored continuously during exposure using an AC impedance technique. Simultaneously, the current distribution over the working electrode during impedance measurement was analyzed from the phase shift, $\theta$, in an intermediate frequency. The result showed that corrosion rate monitoring using an AC impedance method is suitable under the given exposure conditions even during the drying period when the metal is covered with the wetted mortar.

A Study on the Physical Properties of Recycled Fine Aggregate (by Dry and Wet Type Production formula) Mortar Using Blast Furnace Slag (고로슬래그를 사용한 건식 및 습식 재생 잔골재 모르타르의 물리적 특성에 관한 연구)

  • Shim, Jong-Woo;Lee, Sea-Hyun;Seo, Chi-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.501-504
    • /
    • 2006
  • Recycled aggregate mortar contains plenty of calcium hydroxide to improve the strength of blast furnace slag, although the surface mortar made of recycled aggregate deteriorates adhesion to cement paste and blast furnace slag has a low initial strength. Therefore, this study assumes that the combination with both recycled aggregate and blast furnace slag will produce a better performance. The results of the experiment show that dry mortar made of recycled aggregate provides with higher strength than wet mortar does at the 3-day and 7-day age, while lower at the 28-day age. It indicates that a large amount of cement mortar made of dry recycled aggregate has deteriorated adhesion strength. The mixes with 30% and 50% of blast furnace slag and 50% and 75% of recycled aggregate provide with much better strength at the 7-day age, although they usually have latent hydraulic property at the 28-day age. It indicates that calcium hydroxide($Ca(OH){_2}$) in recycled aggregate has affected ground granulated blast furnace slag.

  • PDF