• Title/Summary/Keyword: Dry fuel

Search Result 400, Processing Time 0.037 seconds

Technology Trends in Spent Nuclear Fuel Cask and Dry Storage (사용후핵연료 운반용기 및 건식저장 기술 동향)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Yeong Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.110-116
    • /
    • 2020
  • As the management plan for domestic spent nuclear fuel is delayed, the storage of the operating nuclear power plant is approaching saturation, and the Kori 1 Unit that has reached its end of operation life is preparing for the dismantling plan. The first stage of dismantling is the transfer of spent nuclear fuel stored in storage at plants. The spent fuel management process leads to temporary storage, interim storage, reprocessing and permanent disposal. In this paper, the technical issues to be considered when transporting spent fuel in this process are summarized. The spent fuels are treated as high-level radioactive waste and strictly managed according to international regulations. A series of integrity tests are performed to demonstrate that spent fuel can be safely stored for decades in a dry environment before being transferred to an intermediate storage facility. The safety of spent fuel transport container must be demonstrated under normal transport conditions and virtual accident conditions. IAEA international standards are commonly applied to the design of transport containers, licensing regulations and transport regulations worldwide. In addition, each country operates a physical protection system to reduce and respond to the threat of radioactive terrorism.

Preliminary Shielding Analysis of the Concrete Cask for Spent Nuclear Fuel Under Dry Storage Conditions (건식저장조건의 사용후핵연료 콘크리트 저장용기 예비 방사선 차폐 평가)

  • Kim, Tae-Man;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • The Korea Radioactive Waste Agency (KORAD) has developed a concrete cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. During long-term storage of spent nuclear fuel in concrete casks kept in dry conditions, the integrity of the concrete cask and spent nuclear fuel must be maintained. In addition, the radiation dose rate must not exceed the storage facility's design standards. A suitable shielding design for radiation protection must be in place for the dry storage facilities of spent nuclear fuel under normal and accident conditions. Evaluation results show that the appropriate distance to the annual dose rate of 0.25 mSv for ordinary citizens is approximately 230 m. For a $2{\times}10$ arrangement within storage facilities, rollover accidents are assumed to have occurred while transferring one additional storage cask, with the bottom of the cask facing the controlled area boundary. The dose rates of 12.81 and 1.28 mSv were calculated at 100 m and 230 m from the outermost cask in the $2{\times}10$ arrangement. Therefore, a spent nuclear fuel concrete cask and storage facilities maintain radiological safety if the distance to the appropriately assessed controlled area boundary is ensured. In the future, the results of this study will be useful for the design and operation of nuclear power plant on-site storage or intermediate storage facilities based on the spent fuel management strategy.

Parametric Effects of Ambient Conditions on Thermal Safety of Wolsong (CANDU) Unit 1 Spent Fuel Dry Storage Canister (월성1호기 사용후 핵연료 건식저장 캐니스터의 열적 안전성에 미치는 대기 조건 인자의 영향)

  • Park, Jong-Woon;Chun, Moon-Hyun;Shon, Soon-Hwan;Song, Myung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.166-177
    • /
    • 1993
  • A simplified thermal analysis method to evaluate the maximum temperature of the CANDU 37-element fuel bundle within a fuel basket in a given spent fuel dry storage canister has been presented along with the results of sample analyses performed to examine the parametric effects of the ambient conditions on the maximum fuel temperature within a canister. To solve the multi-dimensional heat transfer problem of the complex geometry of rod bundles within a canister where three modes of heat transfer are superimposed, the CANDU spent fuel bundles stored in the dry storage canister are first replaced by equivalent concentric fuel cylinders. The simplified axi-symmetric two-dimensional multi-mode heat transfer problem of the equivalent fuel cylinders is then analyzed with an existing computer code, HEATING5, using additional input data and heat transfer correlations. A comparison between the predicted temperature profile and the mock-up test results shows that the agreement is quite satisfactory.

  • PDF

Study On the Characteristics of Milled $UO_2$ Powder Prepared by Oxidation and Reduction Process (산화ㆍ환원처리된 $UO_2$ 분말의 분쇄특성 연구)

  • Lee Jae-Won;Lee Jung-Won
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.3-10
    • /
    • 2002
  • The characteristics of dry and wet milled powder prepared by 1 cycle OREOX (oxidation and reduction of oxide fuels) treatment were investigated using the simulated spent fuel pellet. Sintered pellets simulating spent nuclear fuel burned in reactor were fabricated from $UO_2$ powder using as a starting material in fabrication of nuclear fuel. The 1 cycle OREOX-treated powder was prepared by only one path of oxidation md reduction of the simulated pellet. Powder having average particle size of less than 1 $\mu\textrm{m}$ could be easily obtained by dry milling, but not be achieved by wet milling. And, specific surface area of dry milled pow-der was higher than that of wet milled powder. Dry milled powder formed loose agglomerate, while wet milled powder showed the shape of irregular and angular particles. Dry milled powder provided higher green density, resulting in higher sintered density of higher than 95% TD and average grain size of larger than 8 $\mu\textrm{m}$ satisfying the standard specification of sintered pellets.

Development of the Vacuum Drying Process for the PWR Spent Nuclear Fuel Dry Storage (경수로 사용후핵연료 건식저장을 위한 진공건조공정 개발)

  • Baeg, Chang-Yeal;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.435-443
    • /
    • 2016
  • This paper describes the development of a dry operation process for PWR spent nuclear fuel, which is currently stored in the domestic NPP's storage pool, using a dual purpose metal cask. Domestic NNPs have had experience with wet type transportation of PWR spent nuclear fuel between neighboring NPPs since the early 1990s, but no experience with dry type operation. For this reason, we developed a specific operation process and also confirmed the safety of the major cask components and its spent nuclear fuel during the dual purpose metal cask operation process. We also describe the short term operation process that was established to be completed within 21 hours and propose the allowable working time for each step (15 hours for wet process, 3 hours for drain process and 3 hours for vacuum drying process).

Dry storage of spent nuclear fuel and high active waste in Germany-Current situation and technical aspects on inventories integrity for a prolonged storage time

  • Spykman, Gerold
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.313-317
    • /
    • 2018
  • Licenses for the storage of spent nuclear fuel (SNF) and vitrified highly active waste in casks under dry conditions are limited to 40 years and have to be renewed for prolonged storage periods. If such a license renewal has to be expected since as in accordance with the new site selection procedure a final repository for spent fuel in Germany will not be available before the year 2050. For transport and possible unloading and loading in new casks for final storage, the integrity and the maintenance of the geometry of the cask's inventory is essential because the SNF rod cladding and the cladding of the vitrified highly active waste are stipulated as a barrier in the storage concept. For SNF, the cladding integrity is ensured currently by limiting the hoop stress and hoop strain as well as the maximum temperature to certain values for a 40-year storage period. For a prolonged storage period, other cladding degradation mechanisms such as inner and outer oxide layer formation, hydrogen pick up, irradiation damages in cladding material crystal structure, helium production from alpha decay, and long-term fission gas release may become leading effects driving degradation mechanisms that have to be discussed.

Development of Membrane Humidifier for Fuel Cell Bus (200kW) (연료전지 버스용 (200kW급) 막가습기 개발)

  • Lee, Moo-Seok;Kang, Chung-Seok;Yoon, Young-Seo;Kim, Kyoung-Ju;Yun, Joon-Khee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.471-473
    • /
    • 2006
  • An object of the present study is to provide a hollow fiber membrane humidifier capable of improving the humidification efficiency while lowering the pressure loss, and is suitably usable for PEMFC(Polymer Electrolyte Membrane Fuel Cell). The performance of PEMFC is decisively dependent on the humidity of the electrolyte membrane(fluorinated membrane) and a humidifier plays an important role in moisturizing electrolyte membrane. Especially this humidifier is adaptable for lower price to promote the commercialization of fuel cell vehicles and is passive type to be power free and to be volumetrically optimized. In this research, we propose the substitutes for the expensive fluorinated materials and the optimum dry-jet wet spinning conditions of hollow fiber membrane to get the fuel cell humidifier. In addition to that we established the standard method of evaluating the moisturizing performance of the humidifier of various materials.

  • PDF

Crystallite Size Measurement of Uranium Oxide Fuel Powders by Neutron Diffraction (중성자 회절에 의한 산화우라늄 핵연료 분말의 결정크기 측정)

  • 류호진;강권호;문제선;송기찬;최용남
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.318-324
    • /
    • 2003
  • The nano-scale crystallite sizes of uranium oxide powders in simulated spent fuel were measured by the neutron diffraction line broadening method in order to analyze the sintering behavior of the dry process fuel. The mixed $UO_2$ and fission product powders were dry-milled in an attritor for 30, 60, and 120 min. The diffraction patterns of the powders were obtained by using the high resolution powder diffractometer in the HANARO research reactor. Diffraction line broadening due to crystallite size was measured using various techniques such as the Stokes' deconvolution, profile fitting methods using Cauchy function, Gaussian function, and Voigt function, and the Warren-Averbach method. The non-uniform strain, stacking fault and twin probability were measured using the information from the diffraction pattern. The realistic crystallite size could be obtained after separation of the contribution from the non-uniform strain, stacking fault and twin.