• 제목/요약/키워드: Dry deposition velocity

검색결과 42건 처리시간 0.024초

Numerical Simulations of Dry and Wet Deposition over Simplified Terrains

  • Michioka, T.;Takimoto, H.;Ono, H.;Sato, A.
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.270-282
    • /
    • 2017
  • To evaluate the deposition amount on a ground surface, mesoscale numerical models coupled with atmospheric chemistry are widely used for larger horizontal domains ranging from a few to several hundreds of kilometers; however, these models are rarely applied to high-resolution simulations. In this study, the performance of a dry and wet deposition model is investigated to estimate the amount of deposition via computational fluid dynamics (CFD) models with high grid resolution. Reynolds-averaged Navier-Stokes (RANS) simulations are implemented for a cone and a two-dimensional ridge to estimate the dry deposition rate, and a constant deposition velocity is used to obtain the dry deposition flux. The results show that the dry deposition rate of RANS generally corresponds to that observed in wind-tunnel experiments. For the wet deposition model, the transport equation of a new scalar concentration scavenged by rain droplets is developed and used instead of the scalar concentration scavenged by raindrops falling to the ground surface just below the scavenging point, which is normally used in mesoscale numerical models. A sensitivity analysis of the proposed wet deposition procedure is implemented. The result indicates the applicability of RANS for high-resolution grids considering the effect of terrains on the wet deposition.

Canopy를 고려한 대기오염물질의 건성침적모델에 관한 연구 (A Study on the Dry Deposition Model of Air Pollutants Considering Canopy Effect)

  • 이화운;박종길
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.151-158
    • /
    • 1995
  • A numerical model has been developed to predict the deposition of air pollutants considering canopy effect. In this model, the deposition velocity is calculated using the deposition resistances(aerodynamic resistance, viscosity resistance, surface resistance). Using the results, a comparative study was made between the model calculation and observation results. The calculated daily variation of deposition resistances and in daytime most of the model cases are well agreed with observation results, and a slight difference was found in nighttime. From the results, it is suggested that the present model is capable of estimating the deposition velocity of air Pollutants considering characteristics of canopy layer.

  • PDF

공기역학적 저항 모수화에 따른 오존의 건성침적속도 비교 (A Comparison of Dry Deposition Velocity of Ozone to Aerodynamic Resistance Parameterization)

  • 이화운;문난경;노순아
    • 한국환경과학회지
    • /
    • 제11권7호
    • /
    • pp.663-667
    • /
    • 2002
  • The aerodynamic resistance($R_a$) to vertical transfer in the surface boundary layer can be formulated in terms of the friction velocity, height of observation, vertical heat flux and surface roughness. Unlike previous studies which focused on the role of $R_c$, present study perform additional tests using a variety of $R_a$ formulae. Several $R_a$ formulations available in the literature, suitable for unstable conditions, were tested for their influence on the dry deposition velocity. The canopy resistance($R_c$) determines the shape of the diurnal pattern, while a small amplitude diurnal cycle in $V_d$ was attributed to the aerodynamic resistance. The aerodynamic resistance is the major contributor to the formation of spikes in nighttime and $R_a$ is relatively important at night because the canopy resistance is smaller. All formulations show similar diurnal cycle and yield good agreement with the observations. Although present $V_d$ formulations are suitable for numerical air qualify models, the research must continue for further improvements in resistance parametrizations.

Gas/Particle Level and Dry Deposition Flux of Atmospheric PCBs

  • Yeo, Hyun-Gu;Park, Ki-Chul
    • 한국환경보건학회지
    • /
    • 제29권4호
    • /
    • pp.10-16
    • /
    • 2003
  • Atmospheric samples were conducted from September 2001 to July 2002 with GPS-l PUF sampler in rural site to concentration distributions of gas/particle PCBs and to calculate dry deposition flux of PCBs. $\Sigma$PCBs concentrations of gas/particle PCBs were 59.29$\pm$48.83, 6.56$\pm$6.59 pg/㎥, respectively. Gas contribution (%) of total PCBs (gas + particle) was 90% which existed gas phase in the atmosphere. The particle contribution (%) of PCB congeners increased relatively more of the less volatile congeners with the highest chlorine number. The correlation coefficients (r) between total PCBs and temperature ($^{\circ}C$) showed negative correlation in - 0.62 (p<0.0l) for particle phase, positive correlation in 0.63 (p<0.01) for gas phase. In other word, particle phase PCBs is enriched in colder weather which could be due to greater in corporation of condensed gas phase at low temperature. The calculated dry deposition of total PCBs (gas + particle) was 0.008, 0.008 $\mu\textrm{g}$ $m^{-2}$ da $y^{-l}$ which showed maximum dry deposition flux in December, minimum data in July Bs in the atmosphere. The calculated dry deposition fluxes of total PCBs were influenced by particle phase PCBs even though PCBs in the atmosphere were present primarily in the gas phase.e.

우리나라 도시지역의 $SO_2$건성침적 플럭스 산출 (Estimations of the $SO_2$Dry Deposition Flux at Urban Areas in Korea)

  • 이종범;김용국;박일환
    • 한국환경과학회지
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out estimating the dry deposition flux of $SO_2$at eight urban areas in Korea during one year of 1996. To calculate the deposition flux, deposition velocities were calculated by turbulence parameters estimated from routine meteorological data. Also, hourly averaged $SO_2$concentrations which calculated from air pollution monitoring data of each city were used. The dry deposition velocities were mostly higher in the coastal areas than the other areas, which would be caused by relatively strong wind. And, they were high in the daytime because of turbulence activities. The deposition flux of $SO_2$is mainly related to the atmospheric concentration. The annual average $SO_2$concentration and the deposition flux were 22.62ppb and 1510.52g/$\textrm{km}^2$/hr at Pusan respectively. Also, the flux was higher in winter than other season, which was a significant contribution of exhausted fuel for heating. While the deposition velocity was high to 0.688cm/sec at Yosu in case of strong wind and small cloud cover, the deposition flux was high to 1597.4g/$\textrm{km}^2$/hr at Pusan in case of weak wind and small cloud cover.

  • PDF

도시지역의 국지순환과 침적현상에 관한 수치모의 (Numerical Simulation for Local Circulation of Urban Area and Deposition Phenomenon)

  • 이화운;오은주;노순아;반수진
    • 한국대기환경학회지
    • /
    • 제19권6호
    • /
    • pp.773-787
    • /
    • 2003
  • There are variations in the temperature Held due to urban heat island and anthropogenic heating so that regional scale meteorological field is changed. Therefore we simulate and predict the regional climate change according to surface characteristics through regional meteorological model. This study investigates the regional meteorological field by urbanization that influences in local circulation system using CSU-RAMS and simulates dry deposition velocity (V$_{d}$) using PNU/DEM which includes surface characteristics (such as albedo, surface hydrology and rough-ness length etc.) with calculated meteorological field. During the summer, horizontal distributions of V$_{d}$ were simulated using CSU-RAMS and PNU/DEM at Busan metropolitan area. The estimated values of V$_{d}$ were larger in forest and agricultural areas than water areas since ozone with low water solubility is destroyed slowly at wet surface or water.water.

2005년 도시지역의 건성침적량 산정에 관한 연구 (Estimation of Dry Deposition in Urban Area, 2005)

  • 신선아;한진석;이상덕;최진수
    • 한국대기환경학회지
    • /
    • 제22권4호
    • /
    • pp.477-486
    • /
    • 2006
  • Dry deposition fluxes for $SO_2$, particulate sulfate, nitrate, ammonium and $HNO_3$ were estimated in urban area for the time period January$\sim$ October 2005. Fluxes were generated using atmospheric concentration data collected both in Acid Deposition and Air Quality Monitoring Networks, and deposition velocities computed by combining land-use data with meteorological information. The resulting annually averaged $SO_2$, $NO_3$, and aerosol deposition velocities were found to be 0.4 cm/s, 4.3 cm/s and 0.1 cm/s, respectively, and thus deposition rates were 4.4 mg/$m^2$. day for $SO_2$, and 5.4 mg/$m^2$ . day for $NHO_3$, and particulate sulfate, ammonium and nitrate recorded 1.0 mg/$m^2$ . day, 0.4 mg/$m^2$ . day and 0.4 mg/$m^2$ day, respectively. Maximum for in seasonal variation of monthly averaged deposition velocities occurred in summer in contrast to $HNO_3$ showing peak in spring. There was no significant variation for aerosol. The dry to total (wet and dry) deposition contributed about 40% for sulfur and 28% for nitrogen species in this study.

대기오염물질의 건성침적에 관한 연구 (A Study of Air Pollutants Dry Deposition)

  • 이치영;강동구
    • 환경위생공학
    • /
    • 제18권3호통권49호
    • /
    • pp.64-68
    • /
    • 2003
  • Measurement of dried deposition for air pollutant was investigated in Gwang-ju Health college area for a year. The average value of air pollutants was investigated three times a month. Measured heavy metals and concentration of mass are not corelated. Heavy metals were thrown up air as state of large particles and they were moved by wind. Deposition of heavy metals and deposition velocities were high in the order of Fe > n > Cu > Pb > Cr and Pb > Fe > Cr > Zn > Cu, respectively. The pattems of deposition velocity of heavy metals for a year were much the same as each other except that Pb is faster than others.

Modeling of the Environmental Behavior of Tritium Around the Nuclear Power Plants

  • Park, Heui-Joo;Lee, Hansoo;Kang, Hee-Suk;Park, Yong-Ho;Lee, Chang-Woo
    • Nuclear Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.242-249
    • /
    • 2002
  • The relationship between the tritium release rate from the nuclear power plant and tritium concentration in the environment around the Kori site was modeled. The tritium concentration in the atmosphere was calculated by multiplying the release rates and $\chi$/Q values, and the d3V deposition rate at each sector according to the direction and the distance was obtained using a dry deposition velocity. The area around Kori site was divided into 6 zones according to the deposition rate. The six zones were divided into 14 compartments for the numerical simulation. Transfer coefficients between the compartments were derived using site characterization data. Source terms were calculated from the dry deposition rates. Tritium concentration in surface soil water and groundwater was calculated based upon a compartment model. The semi-analytical solution of the compartment model was obtained with a computer program, AMBER. The results showed that most of tritium deposited onto the land released into the atmosphere and the sea. Also, the estimated concentration in the top soil agreed well to that measured. Using the model, tritium concentration was predicted in the case that the tritium release rates were doubled.