2005년 도시지역의 건성침적량 산정에 관한 연구

Estimation of Dry Deposition in Urban Area, 2005

  • 신선아 (국립환경과학원 대기환경과) ;
  • 한진석 (국립환경과학원 대기환경과) ;
  • 이상덕 (국립환경과학원 대기환경과) ;
  • 최진수 (국립환경과학원 대기환경과)
  • Shin S.A. (Air Quality Division, National Institute of Environmental Research) ;
  • Han J.S. (Air Quality Division, National Institute of Environmental Research) ;
  • Lee S.D. (Air Quality Division, National Institute of Environmental Research) ;
  • Choi J.S. (Air Quality Division, National Institute of Environmental Research)
  • 발행 : 2006.08.01

초록

Dry deposition fluxes for $SO_2$, particulate sulfate, nitrate, ammonium and $HNO_3$ were estimated in urban area for the time period January$\sim$ October 2005. Fluxes were generated using atmospheric concentration data collected both in Acid Deposition and Air Quality Monitoring Networks, and deposition velocities computed by combining land-use data with meteorological information. The resulting annually averaged $SO_2$, $NO_3$, and aerosol deposition velocities were found to be 0.4 cm/s, 4.3 cm/s and 0.1 cm/s, respectively, and thus deposition rates were 4.4 mg/$m^2$. day for $SO_2$, and 5.4 mg/$m^2$ . day for $NHO_3$, and particulate sulfate, ammonium and nitrate recorded 1.0 mg/$m^2$ . day, 0.4 mg/$m^2$ . day and 0.4 mg/$m^2$ day, respectively. Maximum for in seasonal variation of monthly averaged deposition velocities occurred in summer in contrast to $HNO_3$ showing peak in spring. There was no significant variation for aerosol. The dry to total (wet and dry) deposition contributed about 40% for sulfur and 28% for nitrogen species in this study.

키워드

참고문헌

  1. 국립환경과학원(2005) 산성침적물 모니터랑과 생태계 영향조사(II), 129-160
  2. 김진영, 김영성, 이승복, 문길주 (2003) 황해 지역의 질소와 황 침적 추정, 한국대기환경학회지, 19(2), 217-229
  3. 이종범, 김용국, 박일환 (2001) 우리나라 도시지역의 $SO_2$ 건성침적 플럭스 산출, 한국환경과학회지, 10(1), 1-7
  4. 최진수(2004) 물표면 매체 채취기를 이용한 팔당호 지역의 건성침적량의 산출, 안양대학교 환경공학과 석사학위논문, 7-12
  5. Andersen, H.V. and M.F. Hovmand (1999) Review of dry deposition measurements of ammonia and nitric acid to forest, Forest Ecology and Management, 114, 5-18 https://doi.org/10.1016/S0378-1127(98)00378-8
  6. Butler, T.J., G.E. Likens, F.M. Vermeylen, and B.S.B. Stunder (2005) The impact of changing nitrogen oxide emissions on wet and dry nitrogen deposition in the northeastern USA, Atmos. Environ., 39, 4851-4862 https://doi.org/10.1016/j.atmosenv.2005.04.031
  7. Brook, J.R., L. Zhang, Y. Li, and D. Johnson (1999) Description and evaluation of a model of deposition velocities for routine estimates of dry deposition over North America. Part II: review of past measurements and model results, Atmos. Environ., 33, 5053-5070 https://doi.org/10.1016/S1352-2310(99)00251-4
  8. Cape, J.N.T., Y.S. Tang, V. Dijk, N. Love, L. Sutton, and M.A. Palcer (2004) Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition. Environmental Pollution, 132, 469-478 https://doi.org/10.1016/j.envpol.2004.05.009
  9. Cobourn, W.G., K.L. Gaui, S. Tambe, L. Suhan, and E. Saltik (1993) Laboratory measurements of sulfur dioxide velocity on marble and dolomite stone surfaces, Atmos. Environ., 27, 193-201 https://doi.org/10.1016/0957-1272(93)90005-Q
  10. Erisman, J.W., G. Draaifers, J. Duyzer, P. Gofschreuder, N. Vanleeuwen, F. Romer, w. Ruijgrok, P. Wyers, and M. Gallagher (1997) Particle deposition to forestssummary of results and application. Atmos. Environ., 31, 321-332 https://doi.org/10.1016/S1352-2310(96)00223-3
  11. Ghim, Y.S. and J.Y. Kim (2002) Dry deposition of Reactive Nitrogen and Sulfur compounds in the Greater Seoul Area, Korean J. Chem. Eng., 19, 52-60 https://doi.org/10.1007/BF02706874
  12. Hicks, B.B., D.D. Baldocchi, T.P. Meyers, R.P. Hosker, and D.R. Matt (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities, Water Air Soil Pollut., 36, 311-30 https://doi.org/10.1007/BF00229675
  13. NAPAP (1991) Acidic deposition : State of Science and Technology, P.M. Irving ed., Vol. 1, Report 6
  14. Park, S.U., H.J. In, S.W. Kim, and Y.H. Lee (2000) Estimation of sulfur deposition in South Korea, Atmos. Environ., 34, 3259-3269 https://doi.org/10.1016/S1352-2310(00)00100-X
  15. Park, S.U. and Y.H. Lee (2002) Spatial distribution of wet deposition of nitrogen in South Korea, Atmos. Environ., 36, 619-628 https://doi.org/10.1016/S1352-2310(01)00489-7
  16. Peters, N.E., T.P. Meyers, and B.T. Aulenbach (2002) Status and trends in atmospheric deposition and emissions near Atlanta, Georgia, 1986-99, Atmos. Environ., 36, 1477-1588
  17. PuxBaum, H. and M. Gregori (1998), Seasonal and Annual deposition rates of sulphur, nitrogen and chloride species to an oak forest in north-eastern austria, Atmos. Environ., 32 (20), 3557-3568 https://doi.org/10.1016/S1352-2310(98)00073-9
  18. USEPA (U.S. Environmental Protection Agency) (2004) Clean Air Status and Trends Network (CASTNET), 2003 annual report, MACTEC Engineering and Consulting Inc, Florida, 21-27
  19. USEPA (U.S. Environmental Protection Agency) (2005) Cloud and Dry Deposition Monitoring, Great Smoky Mountain National Park-Clingmans Dome, TN-2004, MACTEC Engineering and Consulting Inc, Florida, 18-21
  20. Wesely, M.L. and B.B. Hicks (1977) Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation, J Air Pollut. Control Assoc., 27, 1110-1116 https://doi.org/10.1080/00022470.1977.10470534
  21. Walcek, C.J., R.A. Brost, J.S. Chang, and M.L. Wesely (1986) $SO_2,\;sulfate\;and\;HNO_3$ deposition velocities computed using regional landuse and meteorological data, Atmos. Environ., 20(5), 949-964 https://doi.org/10.1016/0004-6981(86)90279-9
  22. Wesely, M.L. (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23(6), 1293-1304 https://doi.org/10.1016/0004-6981(89)90153-4
  23. Wesely, M.L. and B.B. Hicks (2000) A review of the current status of knowledge on dry deposition, Atmos. Environ., 34, 2261-2282 https://doi.org/10.1016/S1352-2310(99)00467-7
  24. Zhang, L., S. Gong, J. Padro, and L. Barrie (2001) A sizesegregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549-560 https://doi.org/10.1016/S1352-2310(00)00326-5