• Title/Summary/Keyword: Dry construction method

Search Result 228, Processing Time 0.027 seconds

An Experimental Study on Compaction Characteristics of Gravel-mixed Decomposed Granite Soil (자갈이 함유된 화강풍화토의 다짐특성에 관한 연구)

  • Ham, Tae-Gew
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.59-66
    • /
    • 2007
  • In order to clarify the influence of gravel content on the mechanical properties of gravel-mixed decompose granite soils, large-scale one-dimensional compression tests were performed. The sample used in the study was a decomposed granite soil from Shimonoseki in Yamaguchi prefecture in Japan. After adjusting the grain size of the said soils, the specimen compacted with a certain level of compaction energy was put to the test. Based on the results obtained, when gravel-mixed decomposed granite soil was compacted at the same energy level, there existed the specific gravel content at which dry density was maximum and which also produced the minimum compression index. Furthermore, from these results, an expression based on a two-phase mixture theory was proposed to quantitatively evaluate the effects of gravel content and initial dry density and the material parameters calculated through the proposed method proved to exactly estimate the actual measuring value.

Geophysical and mechanical investigation of different environmental effects on a red-bed soft rock dam foundation

  • Liming Zhou;Yujie Li;Fagang Wang;Yang Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.139-154
    • /
    • 2023
  • Red-bed soft rock is a common stratum and it is necessary to evaluate the mechanical properties and bearing capacity of red-bed soft rock mass affected by different environmental effects. This paper presents a complete procedure for evaluating the bearing capacity of red-bed soft rock by means of geophysical exploration and in-situ rock mechanics tests. Firstly, the thickness of surface loosened rock mass of red-bed soft rock was determined using geophysical prospecting method. Then, three environmental effects, including natural weathering effect, dry-wet cycling effect and concrete sealing effect, were considered. After each effect lasted for three months, in-situ rock mass mechanical tests were conducted. The test results show that the mechanical properties of rock mass considering the sealing effect of concrete were maintained. After considering the natural weathering effect, the mechanical parameters decrease to a certain extent. After considering the effect of dry-wet cycling, the decreases of mechanical parameters are the most significant. The test results confirm that the red-bed soft rock dam foundation rock mass will be significantly affected by various environmental effects. Therefore, combined with the mechanical test results, some useful implementations are proposed for the construction of a red-bed soft rock dam foundation.

The Estimation of Soil Conversion Factor using Digital Imagery (수치영상을 이용한 토량환산계수 산정)

  • 이종출;차성렬;장호식;김진수
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.169-174
    • /
    • 2003
  • Design of a rational earth volume conversion coefficient is required as the earth volume conversion coefficient may give great influence on construction work volume and construction costs in the civil engineering works where large-scaled earth volume is excavated. However, there are a great deal of difficulties in the calculation of the exact spoil surface earth and Insufficient earth volume by adopting the figures presented on the generally used design specifications which are not the results obtained from the selection tests in calculating the earth volume conversion coefficient. In this connection, it would be desirable to calculate the earth volume conversion coefficient by carrying out large-scaled site test adequate for the relevant environment. In consequence, this study aims at calculating the exact earth volume conversion coefficient of cutting and banking areas of weathering rocks in large-scaled construction sites where land is being developed into home lots. For this, we have excavated the respective 20 sites of the cutting and banking areas in the said site and then calculated the volume after the excavation. As a result, the relative exactness degree of the crossing was calculated at 0.5% in average. The relative exactness degree of 0.5% in the volume may be judged as an exact measurement as it corresponds to 0.17% of the relative exactness degree in the length measurement. We have calculated the exact earth volume conversion coefficient by the use of function ratio as per the wet unit weight and the indoor soil quality test as per volume calculated. And then we have found out minor differences as a result of the comparison and analysis with the earth volume conversion coefficient determined by the dry unit weight test as per sand replacement method. This may be judged as a rational design method for the calculation of earth volume conversion coefficient, as well as high reliability of site test as a precision photogrammetry is adopted for volume measurement of the irregular excavating areas.

  • PDF

Thermal Diffusivity Evaluation of Backfilling Materials for Horizontal Ground Heat Exchanger Using Single-Probe Method (단일 탐침법을 이용한 수평형 지중열교환기 뒤채움재의 열확산계수 산정)

  • Sohn, Byong-Hu;Choi, Hang-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.356-364
    • /
    • 2011
  • Storage and transfer heat in soils is governed by the soil thermal properties and these properties are therefore needed in many engineering applications, including horizontal ground heat exchanger for ground-coupled heat pumps. This paper presents the evaluation results of the thermal diffusivity of soils (silica, quartzite, limestone, sandstone, granite, and two masonry soils used for the trench backfilling materials of the horizontal ground heat exchanger. To assess this thermal property, we (i) measure the soil thermal conductivities using single-probe method and (ii) use the de Vries method of summing the heat capacities of the soil constituents. The results show that the thermal diffusivity tends to increase as dry soil begins to wet, but it approaches a constant value or even decreases as the soil continues to wet. Combined algorithm with and improved model for the thermal conductivity of soils and the constituent equation provides accurate estimates of the soil thermal diffusivity.

Change in Potential Productivity of Rice around Lake Juam Due to Construction of Dam by SIMRIW (벼 생장모형 SIMRIW를 이용한 주암호 건설에 따른 주변지역의 벼 잠재생산성 변이 추정)

  • 임준택;윤진일;권병선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.729-738
    • /
    • 1997
  • To estimate the change in rice productivity around lake Juam due to construction of artificial lake, growth, yield components and yield of rice were measured at different locations around lake Juam for three years from 1994 to 1996. Automated weather stations(AWS) were installed nearby the experimental paddy fields, and daily maximum, average and minimum temperature, solar radiation, relative humidity, and precipitation were measured for the whole growing period of rice. Plant height, number of tillers, leaf area and shoot dry weight per hill were observed from 8 to 10 times in the interval of 7 days after transplanting. Yield and yield components of rice were observed at the harvest time. Simulation model of rice productivity used in the study was SIMRIW developed by Horie. The observed data of rice at 5 locations in 1994, 3 locations in 1995 and 4 locations in 1996 were inputted in the model to estimate the unknown parameters. Comparisons between observed and predicted values of shoot dry weights, leaf area indices, and rough rice yield were fairly well, so that SIMRIW appeared to predict relatively well the variations in productivity due to variations of climatic factors in the habitat. Climatic elements prior to as well as posterior to dam construction were generated at six locatons around lake Juam for thirty years by the method of Pickering et al. Climatic elements simulated in the study were daily maximum and minimum temperature, and amount of daily solar radiation. The change in rice productivity around lake Juam due to dam construction were estimated by inputting the generated climatic elements into SIMRIW. Average daily maximum temperature after dam construction appeared to be more or less lower than that before dam construction, while average daily minimum temperature became higher after dam construction. Average amount of daily solar radiation became lower with 0.9 MJ $d^{-1}$ after dam construction. As a result of simulation, the average productivity of habitats around lake Juam decreased about 5.6% by the construction of dam.

  • PDF

The Fundamental Study on Reusing Method of Ready-Mixed Concrete Sludge as Cement Binder (시멘트계 결합재로서 레미콘 슬러지의 재활용 방안에 관한 기초적 연구)

  • Park Jin-Sub;;;Kang Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.21-26
    • /
    • 2004
  • This study deals with the Hydrated Ability of the Ready-Mixed Concrete's Sludge which is the recycling technology of that sludge. The experiment gathers sludge from Ready-mixed factory. shatters these into pieces in dry condition and understands the differences between current using Portland cement. And then. this examines the possibility of the recycle as a bonding agent through the Compressive Strength and considers the recovery of the hydration. This experiment concludes the same Chemical Composition with the normal Portland cement. while. under the appropriate procedure in hydration recovery. this sludge can be used as the bonding agent in cement. The chemical composition of solid Remicon sludge shows that it has 1.8 times $SiO_2$ than the normal Portland cement. meaning lots of aggregate in Remicon sludge. Also. the specific gravity of Remicon sluge increases with the rise of Baking Temperature and has no difference between 2.77 and 2.94. The mortar flow used for combining the baking material of Remicon sludge does was not changed and is the highest between $750^{\circ}C{\cdot}120min\;and\;800^{\circ}C{\cdot}180min$. Additionally. the Compressive Strength increases with the age, certifying the same Hydrated Ability like cement and the best condition for hydration is $750^{\circ}C{\cdot}120min.$

  • PDF

A Study on the Change of Mass in Flow Velocity Using Loss Resistane Test Method - Using Synthetic rubber system Repair material - (유실저항성 시험방법을 이용한 유속조건에서의 질량변화 추이 연구 합성고무계 보수재료를 중심으로-)

  • Park, So-Young;Jang, Bo;Kim, Soo-Yeon;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.127-128
    • /
    • 2017
  • Tests are conducted according to the ISO TS 16774, Part 3 standard for quality management of leakage repair materials used in cracks in underground concrete structures. These test methods are performed indirectly using a nonwoven fabric on a chalet containing leak repair materials. However, it is considered that it is appropriate to verify the resistance of the repair material, which is required to be applied directly to the cracks in the actual field and to exhibit the resistance of the flow velocity. In this study, mass change was measured by using nonwoven fabric and nonwoven fabric. As a result, both methods showed an increase in mass, which indicated that the maintenance material itself contained a large amount of water, and that the mass change occurred depending on the drying state. Also, depending on the use of nonwoven fabric, the error due to the indirect test could not be ruled out. Therefore, further verification is needed, and it is considered that the test for change of mass reduction measurement is necessary according to the drying time of other types of the same series.

  • PDF

Impact of BS replacement mortar's application to ERCO on moisture evaporation and contraction changes (BS 치환 모르타르의 ERCO 도포시 수분증발 및 수축변화에 미치는 영향)

  • Baek, Cheol;Lee, Jae-Hyeon;Hwang, Chan-Woo;Jang, Deok-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.115-116
    • /
    • 2016
  • This study applied BS replacement mortar's ERCO to see what impact it has on moisture evaporation and contraction changes, and resulted in the following. Depending on the rate of change in length according to the cure method of BS replacement mortar, high-strength areas were shown to have a bigger increase in the rate of change in length than regular or low-strength areas, and differences in rate of change in length due to ERCO cure methods were shown to be slight. For rate of changes in mass, on the whole there was an increase in the order of dry curing, cover curing, 7-day water curing, and28-day water curing. A comprehensive view says that after removal of test piece specimens, ERCO application did not expect a sufficient curing effect in the BS area.

  • PDF

Behavior Characteristics of PCM Infilled Floor System at Elevated Temperature (고온에 노출된 PCM 충진형 바닥 시스템의 거동 특성)

  • Park, Min-Jae;Min, Jeong-Ki;Yoon, Sung-Won;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.2
    • /
    • pp.33-41
    • /
    • 2017
  • Composite Floor system infilled with PCM(Phase Change Material) between upper and lower steel plates was developed to apply the steel frame. When steel frames were applied this system, it can absolutely reduce the duration of construction due to dry construction method. However to apply this system as a structural floor member without fire resistance covering, it must have 2 hours fire resistance performance. Because PCM consisted of three quarters of section with thermal insulation performance, fire resistance performance of this floor system was expected to easily have 2 hours fire resistance performance. This paper was to investigate behavior characteristics of PCM infilled floor system at elevated temperature using FEM analysis to develop the fire resistance performance of it.

A Basic Study on Autogenous Shrinkage and physical property of the Ultra-High-Strength Concrete (초고강도 콘크리트의 자기수축 및 물리적 특성에 관한 기초적 연구)

  • Park, Hyun;Yoon, Ki-Hyun;Cho, Seung-Ho;Kim, Kwang-Ki;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.57-60
    • /
    • 2009
  • In ultra-high-strength concrete, autogenous shrinkage is larger than dry shrinkage due to the consume of a large amount of cement and cementitous material, and this is a factor deteriorating the quality of structures. Thus, we need a new technology for minimizing the shrinkage strain for ultra-high-strength concrete. So, this paper have prepared super-high-strength concrete with specified mixing design strength of over 150MPa and have evaluated a method of reducing autogenous shrinkage by utilizing expander and shrinkage-reducing agent. According to the results of this study, with regard to the change in length by autogenous shrinkage, an expansion effect was observed until the age of seven days. The expansion effect was higher when the contents of the expander material were higher. In addition, ultra-high-strength concrete showed a shrinkage rate that slowed down with time, and the effect of the addition of expander material on compressive strength was insignificant. That is shown that required more database to be accumulated through experimental research for the shrinkage strain of members.

  • PDF