• Title/Summary/Keyword: Dry and lubricant wear

Search Result 18, Processing Time 0.022 seconds

Evaluation of Warm Deep Drawability of Magnesium Alloy AZ31 Sheet Using Solid-Type Lubricants (고체 윤활제를 사용한 마그네슘 합금 AZ31 판재 온간 디프 드로잉의 성형성 평가)

  • Kim, H.K.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.453-458
    • /
    • 2006
  • While the die casting has been mainly used to manufacture the magnesium alloy parts, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. Because the magnesium alloy has low formability at room temperature, forming at elevated temperatures is a necessary condition to obtain the required material flow for press forming. However, the elevated temperature forming does not always guarantee the sufficient formability under the dry friction condition because the surface damage such as scratch or wear may accelerate the material failure. In the present study, the solid-type lubricants such as PTFE, graphite and $MoS_2$ were tested for the square cup warm deep drawing using the magnesium alloy AZ31 sheet. The formability improvement by using the lubricant was examined by comparing the maximum deep drawing depth using the PTFE against no lubricant. The formability difference for the different lubricant was also examined based on the maximum deep drawing depth.

Development of Solid Lubricants for Oil-less Bush (오일리스 부시용 고체윤활제 개발)

  • Kong, Hosung;Han, Hung-Gu;Kim, Jin Uk;Kim, Kyoung Seok;Park, Jong Sik
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This work aims to develop a dry lubricant for oilless bush, especially a solid lubricant, thereby creating a coating method with improved properties of anti-friction and load-carrying capacity without oil lubrication. In this work, spherical-shaped powders of thermosetting resin such as polyimide (PI) are mixed with a binder matrix obtained by mixing a fluorocarbon compound resin such as Polytetrafluoroethylene (PTFE) or Ethylene tetra fluoro ethylene (ETFE) with itself or with a non-fluorocarbon thermoplastic resin such as Polyether ether ketone (PEEK). And these dry lubricant mixtures are thickly coated (200-300 mm in the thickness) on the inner surface of the bush by using a wet-typed air-spray deposition method. It was found that the load-carrying capacity of the solid lubricant for excavator bush (60 mm in diameter) that operates under a high load condition (at 40 MPa) is greatly improved owing to the spherical-shaped powders of thermosetting resin. In addition, the coefficient of friction at the sliding surface is also reduced less than 0.1. Thick coating also lowers the contact stress at the edge of a bush that results in better tribological performances. The result suggests that the lubrication performance and durability life of the bush can be remarkably improved even without lubrication (oil or grease).

Friction and wear characteristics during sliding of ${ZrO}_{2}, {Si}_{3}{N}_{4}$ and SiC with SiC, AISI 4340 and bronze under dry and lubricated condition (세라믹 ${ZrO}_{2}, {Si}_{3}{N}_{4}$ 및 SiC를 SiC, AISI 4340 및 청동으로 윤활 및 건조조건에서 미끄름시험하였을 때의 마찰 및 마멸 거동)

  • 강석춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.404-410
    • /
    • 1989
  • Friction and wear tests were conducted with several different ceramics sliding against ceramic and metal couples with and without lubricant in a two disk type sliding machine. The purpose was to know the tribological properties of ceramics. With very different physical and chemical properties of ceramics compared to metal, the tribological properties of ceramics should be defined in detail. Among them, the wear and friction with same or different couple is very important. Also the lubrication of ceramic is one of the major area to be studied. From this research, SiC, SI$_{3}$N$_{4}$ and ZrO$_{2}$ were slid against SiC, AISI 4340 and bronze under various sliding condition. It was found that the friction and wear of ceramics are strongly dependent on the sliding condition. For unlubricated sliding against SiC, ZrO$_{2}$ shows low wear and friction coefficient over wide lange of load, but with lubricated sliding, SiC shows better performance whatever lubricants were used. Also the effect of lubricant depended upon the material properties of sliding pairs. The general tribological properties of ceramics were not correlated with chattering and noise at low load but it could be reduced or avoided effectively by using lubricants. SiC and Si$_{3}$N$_{4}$ slid against SiC have transition from mild to severe wear at high load but ZrO$_{2}$-SiC and SiC-steel have not. Wear debris formed on the contact area of SiC couples was main cause of the initiation of transition. At high speed, only ZrO$_{2}$ sliding against SiC has transition of wear by low thermal conductivity.

Tribological Characteristics of Si-Diamond-Like Carbon Films in a Condition with Carbon Nanotube Ink Lubricant (Carbon Nanotube 잉크 환경에서의 Si-Diamond-Like Carbon 박막의 내마모 특성)

  • Jang, Kil-Chan;Kim, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.149-155
    • /
    • 2011
  • We investigated tribological characteristics of diamond-like carbon (DLC) in a condition with carbon nanotube (CNT) content of 1wt% in aqueous solution. Si-DLC films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process on Al6061 aluminum alloy. In this study, the deposition of DLC films was carried out in vacuum with a chamber pressure of 10-5 to 10-3 Torr achieved by mechanical pump followed by turbo molecular pump. The surface adsorbed oxygen on the Aluminum substrates was removed by passing Ar gas for 10 minutes. The RF power was maintained at 500W throughout the experiment. A buffer layer of HMDSO was deposited on the substrate to improve the adhesion of DLC coating. At this point CH4 gas was introduced in the chamber using gas flow controller and DLC coating was deposited on the buffer layer along with HMDSO for 50 min. The thickness of 1 ${\mu}m$ was obtained for DLC films on aluminum substrates The tribological properties of as synthesized DLC films were analyzed by wear test in the presence of dry air, water and lubricant such as CNT ink.

Effects of Increasing Ambient Temperatures on the Static Load Performance and Surface Coating of a Gas Foil Thrust Bearing (외기 온도 증가가 가스 포일 스러스트 베어링의 하중지지 성능과 표면 코팅에 미치는 영향)

  • Hyunwoo Cho;Youngwoo Kim;Yongbum Kwon;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.103-110
    • /
    • 2024
  • Gas foil thrust bearings (GFTBs) are oil-free self-acting hydrodynamic bearings that support axial loads with a low friction during airborne operation. They need solid lubricants to reduce dry-friction between the runner and top foil and minimize local wears on their surfaces during start-up and shutdown processes. In this study, we evaluate the lift-off speeds and load capacity performance of a GFTB with Polytetrafluoroethylene (PTFE) surface coating by measuring drag torques during a series of experimental tests at increasing ambient temperatures of 25, 75 and 110℃. An electric heat gun provides hot air to the test GFTB operating in the closed booth to increase the ambient temperature. Test results show that the increasing ambient temperature delays the lift-off speed and decreases the load capacity of the test GFTB. An early developed prediction tool well predicts the measured drag torques at 60 krpm. After all tests, post inspections of the surface coating of the top foil are conducted. Scanning electron microscope (SEM) images imply that abrasive wear and oxidation wear are dominant during the tests at 25℃ and 110℃, respectively. A quantitative energy dispersive spectroscopy (EDS) microanalysis reveals that the weight percentages of carbon, oxygen, and nitrogen decrease, while that of fluorine increases significantly during the highest-temperature tests. The study demonstrates that the increasing ambient temperature noticeably deteriorates the static performances and degrades the surface coating of the test GFTB.

The Effect of Si Content on the Tribological Behaviors of Ti-Al-Si-N Coating Layers (Ti-Al-Si-N 코팅막의 마모거동에 미치는 Si 함량의 영향)

  • Jin, Hyeong-Ho;Kim, Jung-Wook;Kim, Kwang-Ho;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.88-93
    • /
    • 2005
  • Ti-AI-Si-N coating layers were deposited on WC-Co substrates by a hybrid system of arc ion plating and sputtering techniques. The coatings were prepared with different Si contents to investigate the effect of Si content on their mechanical properties and microstructures. The dry sliding wear experiments were conducted on Ti-AI-Si-N coated WC-Co discs at constant load, 3N, and sliding speed, 0.1 m/s with two different counterpart materials such as steel ball and zirconia ball using a conventional ball-on-disc sliding wear apparatus. In the case of steel ball, the friction coefficient of Ti-AI-Si-N coating layers became lower than that of Ti-AI­N coating layers. The friction coefficient decreased with increasing of Si content due to adhesive wear behavior between coating layer and steel ball. On the contrary, in the case of zirconia ball, the friction coefficient increased with increasing of Si content, indicating that abrasive wear behavior was more dominant when the coating layers slid against zirconia ball.

A STUDY ON MECHANICAL PROPERTIES OF TiN, ZrN AND WC COATED FILM ON THE TITANIUM ALLOY SURFACE

  • Oh, Dong-Joon;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.740-750
    • /
    • 2006
  • Statement of problems. In an attempt to reduce screw loosening, dry lubricant coatings such as pure gold or tefron have been applied to the abutment screw. However, under repeated tightening and loosening procedures, low wear resistance and adhesion strength of coating material produced free particles on the surface of abutment screw and increased frictional resistance resulting in screw tightening problems. Purpose. The aim of this study was to compare friction coefficient, adhesion strength, vickers hardness and evaluate coating surface of titanium alloy specimens coated with TiN(titanium nitride), ZrN(zirconium nitride) and WC(tungsten carbide). Material and method. Titanium alloy(Ti-6Al-4V) discs of 12mm in diameter and 1mm in thickness divided into 4 groups. TiN, ZrN and WC was coated for the specimens of 3 groups respectively, and those of 1 group were not coated. Each group was made up of 4 specimens. In this study, sputtering method was used among the PVD(Physical Vapor Deposition) techniques available for TiN, ZrN and WC coatings. Friction coefficient, adhesion strength, vickers hardness and coating surface of 4 groups were measured. Results. 1. For all three coating conditions, friction coefficient was significantly decreased. Especially, ZrN coated surface showed the lowest value. $TiN(0.39{\pm}0.02)$, $ZrN(0.24{\pm}0.01)$, $WC(0.31{\pm}0.03)$. 2. TiN coating showed the highest adhesion strength, however ZrN coating had the lowest value. $TiN(25.3N{\pm}1.6)$, $ZrN(14.8N{\pm}0.6)$, $ WC(18.4N{\pm}0.7)$. 3. Vickers hardness of all three coatings was remarkably increased as compared with that of none coated specimen. TiN coating had the highest Vickers hardness, however WC coating showed the lowest value. $TiN(1865.2{\pm}33.8)$, $ZrN(1814.4{\pm}18.6)$, $WC(1008.5{\pm}35.9)$. 4. The ZrN or WC coated specimen showed a homogeneous and smooth surface, however the rough surface with defects was observed for TiN coating. Conclusions. When TiN, ZrN and WC coating applied to the abutment screw, frictional resistance would be reduced, as a result, the greater preload and prevention of the screw loosening could be expected.

INFLUENCE OF TUNGSTEN CARBIDE/CARBON COATING ON THE PRELOAD OF IMPLANT ABUTMENT SCREWS (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이 전하중에 미치는 영향에 관한 연구)

  • Choi Jin-Uk;Jeong Chang-Mo;Jeon Young-Chan;Lim Jang-Seop;Jeong Hee-Chan;Eom Tae-Gwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.229-242
    • /
    • 2006
  • Statement of problem: In order to increase preload with reducing the friction coefficient, abutment screws coated with pure gold and Teflon as dry lubricant coatings have been introduced. But the reported data indicate that if screw repeated tightening and loosening cycle, an efficiency of increasing preload was decreased by screw surface wearing off. Purpose: This study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on the preload of abutment screws and the stability of coating surface after repeated closures. Material and method: The rotational values of abutment screws and the compressive forces between abutment and fixture were measured in implant systems with three different joint connections, one external butt joint and two internal cones. Moreover the stability and the alteration of coating surface were examined by comparison of the compressive force and the removable torque values during 10 consecutive trials, observation with scanning electron microscope and analyzed the elemental composition with energy dispersive x-ray spectroscopy Results and conclusion: 1. Application of coating resulted in significant increase of compressive force in all implant systems(P<.05). The increasing rate of compressive force by coating in external butt joint was gloater than those in internal cones (P<.05). 2. Coated screw showed the significant additional rotation compared to non-coated screw in all implant systems (P<.05). There were no significant differences in the increasing rate of rotation among implant systems (P>.05). 3. Removable torque values were greater with non-coated screw than that with coated screw (P<.05). 4. Coated screw showed insignificant variations in the compressive forces during 10 consecutive trials(P>.05) 5. After repeated trials, the surface layer of coated screw was maintained relatively well. However surface wearing and irregular titanium fragments were found in non-coated screw.