• Title/Summary/Keyword: Dry Season

Search Result 989, Processing Time 0.026 seconds

Effect of Reused Cocopeat Substrate on Growth and Yield of Summer-cultivated Paprika in EC-based Recycling Hydroponic Cultivation (EC기준 순환식 수경재배에서 코크피트배지 재사용이 여름작형 파프리카의 생육 및 수량에 미치는 영향)

  • Jang, Dong-Cheol;Choi, Ki-Young;Yeo, Kyung-Hwan;Kim, II-Seop
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.100-107
    • /
    • 2017
  • This experiment was carried out to analyze the effects of substrate reuse on the growth and yield of summer paprika in cyclic hydroponics. The test group was divided into a new coco slab, one year reused coco slab two year reused coco slab based on 30% nutrient solution reuse, and was performed from April 18 to November 31, 2016 for 30 weeks. As a result, plant height of early growth was that the 2 year reused slab was longer than the new slab but the final growth period was 56.58 cm shorter. First group flower position was that reused slab was shorter by 2.92 cm than the new slab and the second group flower position was 0.31 cm long. The relative internode length of early growth, when the reused slab was used, the imbalance in the late growth stage was increased compared with the use of the new slab. The number of growth nodes in the 1 and 2 year reused slab was the smallest with 27.4 nodes. However, the number of harvested nodes did not show the difference in the test group, and the ratio of harvested that the 2 year reused slab was the highest at 26.8%. The ratio of unmarketable fruit tended to increase as the growth progressed. Fresh weight was 227.7g for new slab, 219.2g for 2 year reused slab and 21.2g for 1 year reused slab. The dry weight of the new slab increased with the reuse of the slab. It was 17.13g for new slab, 18.26g for 1 year reused, and 19.28g for 2 year reused. The average water content of the entire growth period was smaller as the slab was reused, and the 1 year reused slab was about 20g less than the 2 year reused slab. This trend was steadily occurring throughout the entire growing season. Especially, the reused slab for 1 year was less than 60g after 3 groups compared to other test groups. In conclusion, If will control seriously occurrence of unmarketable fruits by weakening after medium growth in summer-cultivated paprika in EC-based recycling hydroponic cultivation with reused cocopeat substrate, It is not what I have to worry that decrease of the yield and deterioration of the quality due to the change of physical and chemical properties of the slab and the pathogenic bacteria infection.

Adequate Standard Pot and Number of Plants Per Tree of Raising Seeding Pot on the Foxtail Millet Transplanting Culture in the Southern Province (남부지방 조 이식재배시 육묘폿트의 적정규격 및 주당본수)

  • Kim, Yong-Soon;Kim, Dong-Kwan;Choi, Jin-Gyung;Park, Heung-Gyu;Kim, Myeong-Seok;Shin, Hae-Ryoung;Choi, Gyung-Ju;Yun, Jong-Tag
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • This study was performed to investigate the adequate standard pot and number of plants per tree of raising seeding pot on the foxtail millet transplanting culture in the southern province. Due to the various application of wellbeing-health food recently, for upbringing of the foxtail millet, millet and sorghum in minor cereals, R & D and policy support is being promoted actively. The foxtail millet growing season is so short from 90 to 130 days, and it is large variations for a growth temperature. The main results are as follows. When it comes to foxtail millet transplantation, seedling quality of 406 holes, 200 holes and 162 holes of raising seeding pot type were not all significant, and field rooting percentage is accounted for all 94 to 95%. Yield of a foxtail millet was exposed in 406holes 305 kg/10a>162holes 303 kg> 200holes 302 kg order, and it was no significance between test processing. When it's the raising seeding transplanting culture, in case of pot culture, 406holes pot culture were reduced the bed soil cost 63%, pot 50%, working hours 18% for 200holes pot. Transplanting seedling quality per a foxtail millet transplanting culture method, dry weight was high inclination as transplanting number of plant is less, and field rooting percentage displayed more than all 95%. Yield appeared to 2 plants seedling transplanting 315kg/10a> 3 plants seedling transplanting 304kg>1 plant seedling transplanting 256kg order. The projected cost per the pot-sort on the raising seeding transplanting culture of foxtail millet, the seedling transplanting culture of 406holes was reduced 40% percentages compared to 200holes as 76,230won/10a. As a result, 406holes pot and 2plants seedling transplanting culture, labor-saving culture was possible.

Analysis of Forest Fires during Chosun Dynasty through Historical Literature Survey (역사문헌 고찰을 통한 조선시대 산불특성 분석)

  • Kim, Dong-Hyun;Kang, Young-Ho;Kim, Kwang-Il
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.8-21
    • /
    • 2011
  • This study surveyed historical records on outbreak and features of forest fires during Chosun Dynasty's 518 years in being and analyzed the Annals of the Chosun Dynasty; The Diaries of the Royal Secretariat, archives from Records of the Border Defense Council, The Compilation of Ministry Proposals, Posthumous Records of King Cholchong etc. Forest fires were most prevalent and extreme during King Hyunjong (14 cases) and King Sunjo (13 cases) due to strong wind, and the biggest-ever forest fire broke out in the fourth year of King Soonjo (1804) in the east coast of Korea in Kangwon province. The fire had resulted in 61 fatalities and 2,600 destroyed houses. Forest fire in the east coast of Korea, Kangwon province, in the $13^{th}$ year of King Hyeonjong (1672) is recorded to have caused the highest number of deaths, 65people. The most frequent cause of forest fires during Chosun Dynasty was unidentified (42 cases), followed by accidental fire (10 cases), arson or lightning (3 cases), fire during hunting (2 cases), play with fire by children, destruction of patty fields and dry fields by fire and house fire (1 case respectively). By region, 56 % of forest fires erupted in the east coast (39 cases) and this was followed by the west sea (9 cases), Seoul and central region (8 cases) and the southern part of Korea (7 cases). By season, spring was found to be most vulnerable to forest fire as it accounted for 73 % of the total amounting to 46 cases. Behind were summer (11 cases), winter (6 cases) and autumn (0 case). Specifically, most forest fire broke out on April and May, which is the same as today. Archives and literature indicate that the person who involved in forest fire by accidental as well as arson had to be punished by banishment, expulsion from government office and public hanging. Also, officials in charge of the region that suffered forest fire were subject to reprimand. In conclusion, risk and gravity of forest fires were evident during the Chosun Dynasty as specified in historical archives and share many similarities with today's forest fires in terms of the duration and regional patterns.

Limiting Nutrient on Phytoplankton Growth in Gwangyang Bay (광양만에서 식물플랑크톤증식의 제한영양염)

  • Lee, Jae-Seong;Jung, Rae-Hong;Kim, Soung-Soo;Go, Woo-Jin;Kim, Kui-Young;Park, Jong-Soo;Lee, Young-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.201-210
    • /
    • 2001
  • Salinity, DIN, DIP, DIN/DIP and indigenous algal assay were determined to estimate the limiting nutrient for phytoplankton growth in Gwangyang Bay, South Sea of Korea. Seawater samples were collected at surface and bot-tom water in 4 November 1999 (dry season) and 2 September 2000 (after heavy rain). In 4 November 1999, the salinity, DIN, DIP and DIN/DIP were 29.92 psu, 13.59 ${\mu}M$, 3.41 ${\mu}M$ and 4.14 respectively. In 2 September 2000, These values were 24.62 psu, 27.77 ${\mu}M$, 2.82 ${\mu}M$ and 9.79 respectively. The DIN and DIP concentrations in this study were higher than Deukryang, Yeoja and Gamak Bay, South Sea of Korea. Especially, DIP concentration was 8 times high compared to Deutryang, Yeoja and Gamak Bay. The main sources of nitrogen seem to be freshwater runoff from Somjin River and industrial wastewater. But, the main sources of phosphorus seem to be industrial wastewater around Gwangyang Bay. The limiting nutrient was nitrogen at all station in 4 November 1999. The limiting nutrient was also nitrogen in 2 September 2000 in spite of heavy rain observed because of relatively much volume of phosphorus sup-plied from point sources than nitrogen. In case of below 20 psu in salinity by heavy rain, the limiting nutrient willbe shift from nitrogen to phosphorus at some area of Somjin River estuary. But the limiting nutrient will be never shift to phosphorus throughout Gwangyang Bay, eastern coast of Yeoja and Dolsan because of much volume of phosphorus runoff from point source in coastal area of Gwangyang Bay.

  • PDF

Clinical Outcomes of Thoracic Sympathicotomy for Palmar Hyperhidrosis (수부 다한증에서 흉부교감신경 절제술의 성적)

  • Lee, Jang-Hoon;Lee, Jung-Cheul
    • Journal of Chest Surgery
    • /
    • v.41 no.1
    • /
    • pp.89-94
    • /
    • 2008
  • Background: Thoracoscopic R3 sympathicotomy can effectively treat palmar hyperhidrosis. Here, we evaluated post-operative outcomes of patients receiving a thoracoscopic R3 sympathicotomy due to palmar hyperhidrosis. Material and Method: From January 2001 to December 2006, 225 patients were treated with a R3 sympathicotomy, and follow up was completed for 200 patients, with an average follow up period of 51.7 ($11{\sim}80$) months. We measured postoperative hand sweating according to four grades; dry (grade 1), proper (grade 2), light sweating (grade 3), heavy sweating (grade 4) and evaluated patient satisfaction using 4 grades: very good (grade 0), good (grade1), regular (grade 2), and deficient (grade 3). Result: There were no differences in clinical parameters between the compensatory sweating group and the non-compensatory sweating group. There was a 83.5% compensatory sweating rate. The degree of compensatory sweating related to the patient's body mass index and was influenced by the season, environmental temperature, and emotional stress. Conclusion: The satisfaction rate was 61.5%, and the degree of satisfaction related to the development of compensatory sweating. Therefore, reducing compensatory sweating would increase patient satisfaction with R3 sympathicotomies.

Agricultural Geography of Rice Culture in California (미국 캘리포니아주(州)의 벼농사에 관한 농업지리학적 연구)

  • Lee, Jeon;Huh, Moo-Yul
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.51-67
    • /
    • 1996
  • There are three main rice-growing regions in the United States: the prairie region along the Mississippi River Valley in eastern Arkansas; the Gulf Coast prairie region in southwestern Louisiana and southeastern Texas; and the Central Valley of California. The Central Valley of California is producing about 23% of the US rice(Fig. 1). In California. most of the crop has been produced in the Colusa, Sutter, Butte, Glenn Counties of the Sacramento Valley since 1912, when rice was commercially grown for the first time in the state(Fig. 2). Roughly speaking, the average annual area sown to rice in California is about 300,000 acres to 400,000 acres during the last forty years(Fig. 3). California rice is grown under a Mediterranean climate characterized by warm, dry, clear days, and a long growing season favorable to high photosynthetic rates and high rice yields. The average rice yield per acre is probably higher in California than in any other rice-growing regions of the world(Fig. 4). A dependable supply of irrigation water must be available for a successful rice culture. Most of the irrigation water for California rice comes from the winter rain and snow-fed reservoir of the Sierra Nevada mountain ranges. Less than 10 percent of rice irrigation water is pumped from wells in areas where surface water is not sufficient. It is also essential to have good surface drainage if maximum yields are to be produced. Rice production in California is highly mechanized, requiring only about four hours of labor per acre. Mechanization of rice culture in California includes laser-leveler technology, large tractors, self-propelled combines for harvesting, and aircraft for seeding, pest control, and some fertilization. The principal varieties grown in California are medium-grain japonica types with origins from the cooler rice climates of the northern latitudes (Table 1). Long-grain varieties grown in the American South are not well adapted to California's cooler environment. Nearly all the rice grown recently in California are improved into semidwarf varieties. Choice of variety depends on environment, planting date, quality desired, marketing, and harvesting scheduling. The Rice Experiment Station at Biggs is owned, financed, and administered by the rice industry. The station was established in 1912, as a direct result of the foresight and effort of Charles Edward Chambliss of the United States Department of Agriculture. Now, The station's major effort is the development of improved rice varieties for California.

  • PDF

Effects of Clipping Method on Forage Yield and Quality in Pearl Millet [Pennisetum americanum(L.) Leeke] (진주조 예취방법이 청예수량 및 품질에 미치는 영향)

  • Keun-Yong Park;Rae-Kyung Park;Byeong-Han Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.3
    • /
    • pp.274-279
    • /
    • 1989
  • The objective of the study was to determine optimum clipping time, interval and height of Suwon 1 pearl millet hybrid in Korea to increase forage yield and quality. Clipping height 20 cm above the ground surface was the best resulting in producing 11.1 tons per hectare of green chop. However, clipping height 5 cm was not good for regrowth of the ratoon crop. Just after the first cutting when the plant height reached two meters around mid-July, four weeks cutting interval was the best for higher forage yield of 11. 4 tons per hectare. Crude protein content of the clipping height 20 cm was the highest being 12.8 percent. Dry matter of the first cut contained 14 percent of crude protein being the highest, and with lower crude fiber content of 24 percent. And also four weeks cutting interval was the highest in crude protein content being 13.1 percent along with lower crude fiber content of 24.2 percent. Thus, the forage yield depended on clipping height greatly, but the quality was dependent upon clipping time, interval and frequency more than cutting height pearl millet plant. It would be desirable for higher yield and quality of Suwon 1 pearl millet hybrid to cut three or four times during the growing season at 20 cm clipping height and at four weeks clipping interval from the first cut when the canopy height is above one meter under the Korean environmental conditions.

  • PDF

Estimation of Agricultural Water Quality Using Classification Maps of Water Chemical components in Seonakdong River Watershed (수질성분 분포도를 이용한 서낙동강 수계 농업용수 수질평가)

  • Ko, Jee-Yeon;Lee, Jae-Sang;Kim, Choon-Song;Jeong, Ki-Yeol;Choi, Young-Dae;Yun, Eul-Soo;Park, Seong-Tae;Kang, Hwang-Won;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.138-146
    • /
    • 2006
  • To understand the status of water quality and work out a suitable countermeasures in Seonakdong watershed which has poor agro- environmental condition because of severe point and non-point source pollution by popularized city and near sea, we investigated the pollution sources and water quality from '03 and '05 and the result were mapped with GIS and RS for end-users's convenient comprehense and conjunction of water quality and geological data. The most degraded tributary was Hogeo stream which was affected directly by highly popularized Gimhae city, the main pollution source of the watershed. The pollution of tributaries in watershed increased the T-N of main body that reached over 4 mg/L during dry season. Pyeonggang stream and the lower part of main water way were suffered from high salt contents induced near sea and the EC value of those area were increased to 2.25 dS/m. The delivered loads of T-N and T-P were largest in Joman river as 56% and 61% of total delivered loads 1mm tributaries because of lots of stream flow. When Management mandate for irrigation water in Seonakdong river watershed was mapped for estimating integrated water quality as the basis of classification of EC and T-N contents in water, Hogeo and Shineo catchments were showed the requiring countermeasures none against nutrients hazard and Pyeonggang catchment was the vulnerable zone against nutrients and salts hazard. As the result, Seonakdong watershed had very various status of water quality by characteristics of catchments and countermeasures for improving water quality and crop productivity safely should changed depend on that.

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Comparison of Non-structural Carbohydrate Concentration Between Zoysiagrass and Creeping Bentgrass During Summer Growing Season (하계 생육기 동안 Zoysiagrass와 Creeping Bentgrass의 비구조적 탄수화물 함량의 비교)

  • Kim, Dae-Hyun;Jung, Woo-Jin;Lee, Bok-Rye;Kim, Kil-Yong;Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2002
  • To compare the Carbon metabolic response to high temperature stress in Zoysiagrass [Zoysia matrella (L.) Merr.] and Creeping bentgrass (Agrostis palustris Huds) with respect to heat tolerance, C metabolites were determined from April to September. Sampling was carried out on an established golf course (Muan Country Club, Chonnam, Korea). Shoot mass(g Dry weight per hole cup) of creeping bentgrass started to decrease from June and recovered from August whereas that of zoysiagrass was less varied. Chlorophyll content in creeping bentgrass was significantly higher than zoysiagrass until July, and then decreased by 43% from July to August. Zoysiagrass contained higher soluble sugar than creeping bentgrass throughout experimental period. Soluble sugar in zoysiagrass increased about 58% from April to May, and less varied until August. Soluble sugar in creeping bentgrass slightly increased until July and sharply decreased at August. Starch concentration in zoysiagrass continuously decreased to September after a significant increase from April to May. A remarkable fluctuation in both starch and fluctuation concentration was observed between June and August showing high accumulation for June to July and high degradation for July to August. These results suggest that through creeping bentgrass suffers much severely from high temperature stress than zoysiagrass especially June to August. An active accumulation and degradation in nonstructural carbohydrate in creeping bentgrass during this period might be associated with heat stress.