• Title/Summary/Keyword: Dry Grinding

Search Result 86, Processing Time 0.024 seconds

Effect of Sample Preparation on Predicting Chemical Composition and Fermentation Parameters in Italian ryegrass Silages by Near Infrared Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 이탈리안 라이그라스 사일리지의 화학적 조성분 및 발효품질 평가에 미치는 영향)

  • Park, Hyung Soo;Lee, Sang Hoon;Choi, Ki Choon;Lim, Young Chul;Kim, Jong Gun;Seo, Sung;Jo, Kyu Chea
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.257-266
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal and dired animal forages. Analysis of forage quality by NIRS usually involves dry grinding samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations on prediction ability of chemical composition and fermentation parameter for Italian ryegrass silages by NIRS. A population of 147 Italian ryegrass silages representing a wide range in chemical parameters were used in this investigation. Samples were scanned at 1nm intervals over the wavelength range 680-2500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in oven-dried grinding and fresh ungrinding condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with four spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV) and maximizing the correlation coefficient of cross validation (${R^2}_{CV}$). The results of this study show that NIRS predicted the chemical parameters with high degree of accuracy in oven-dried grinding treatment except for moisture contents. Prediction accuracy of the moisture contents was better for fresh ungrinding treatment (SECV 1.37%, $R^2$ 0.96) than for oven-dried grinding treatments (SECV 4.31%, $R^2$ 0.68). Although the statistical indexes for accuracy of the prediction were the lower in fresh ungrinding treatment, fresh treatment may be acceptable when processing is costly or when some changes in component due to the processing are expected. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation parameter of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

Effect of Sample Preparation on Prediction of Fermentation Quality of Maize Silages by Near Infrared Reflectance Spectroscopy

  • Park, H.S.;Lee, J.K.;Fike, J.H.;Kim, D.A.;Ko, M.S.;Ha, Jong Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.643-648
    • /
    • 2005
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal grains and forages. If samples could be analyzed without drying and grinding, then sample preparation time and costs may be reduced. This study was conducted to develop robust NIRS equations to predict fermentation quality of corn (Zea mays) silage and to select acceptable sample preparation methods for prediction of fermentation products in corn silage by NIRS. Prior to analysis, samples (n = 112) were either oven-dried and ground (OD), frozen in liquid nitrogen and ground (LN) and intact fresh (IF). Samples were scanned from 400 to 2,500 nm with an NIRS 6,500 monochromator. The samples were divided into calibration and validation sets. The spectral data were regressed on a range of dry matter (DM), pH and short chain organic acids using modified multivariate partial least squares (MPLS) analysis that used first and second order derivatives. All chemical analyses were conducted with fresh samples. From these treatments, calibration equations were developed successfully for concentrations of all constituents except butyric acid. Prediction accuracy, represented by standard error of prediction (SEP) and $R^2_{v}$ (variance accounted for in validation set), was slightly better with the LN treatment ($R^2$ 0.75-0.90) than for OD ($R^2$ 0.43-0.81) or IF ($R^2$ 0.62-0.79) treatments. Fermentation characteristics could be successfully predicted by NIRS analysis either with dry or fresh silage. Although statistical results for the OD and IF treatments were the lower than those of LN treatment, intact fresh (IF) treatment may be acceptable when processing is costly or when possible component alterations are expected.

Hard Turning Machinability of V30 Cemented Carbide with PCD, cBN and PcBN Cutting Tool (초경합금재의 하드터닝에서 공구재종에 따른 절삭성)

  • Heo, Sung-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.47-54
    • /
    • 2008
  • Hard turning process can be defined as a single-point machining process carried out on "hard" materials. The process is intended to replace or limit traditional grinding operations that are expensive, environmentally unfriendly, and inflexible. The purpose of this study is to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, tool wear shape and chip formation by the outer cutting of a kind of wear resistant tungsten carbide V30. Hard turning experiments were carried out on this alloy using the PCD (Poly Crystalline Diamond), cBN (cubic Boron Nitride) and PcBN (Polycrystalline cubic Boron Nitride) cutting tools. The PcBN and the usual cBN tools were used to be compare with the PCD tool and the dry turning was carried out. The PcBN is attractive as the tool material which replaces the PCD. The tool wear width and cutting force were measured, and the worn tool and chip were observed. The difference of the tool wear mechanism among the three tool materials was investigated.

Effect of Filler Types on Phenol-Formaldehyde Resin Adhesive for Plywood (충전제의 종류가 합판용 페놀수지 접착제에 미치는 효과)

  • Oh, Yong-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.48-52
    • /
    • 1998
  • Residues such as walnut, pinenut and peanut shells were used as a filler in adhesive for bonding radiata pine plywood. The nutshell residues were prepared by simply drying to 8% moisture content and grinding the dry material using a laboratory Wiley mill with a $75{\mu}m$ (200 mesh) screen. The nutshells residues were compared to a commercial filler commonly used in adhesives by the structural plywood and laminated veneer lumber industry in the United States. The adhesive mixes were made by following the recommended procedure of Georgia-Pacific Resins, Inc., using phenol-formaldehyde resin. For each filler type, three-ply plywoods, 6 mm nominal thickness and 30 by 30 cm in size, were fabricated at two press times (4 and 5 min) and around 30 minute assembly time. Evaluations of the nutshell residues were carried out by tension shear tests after cyclic boil tests on plywood. The results of the performance test included tension shear strength and wood failure. All plywoods made with the nutshell fillers were comparable to those made with the control filler. These results indicate that nutshell residues would be suitable as filler for plywood adhesives.

  • PDF

Dietary Fiber Contents and Physical Properties of Wild Vegetables (산채류의 식이섬유 함량과 물리적 특성)

  • 박종숙;이원종
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.120-124
    • /
    • 1994
  • Nine wind vegetables were analyzed for moisture, ash, crude protein, crude lipid and dietary fiber. Wild vegetables contained 33-53% of dietary fiber on a dry weight basis. Dalle (Allium monanthum) contained 49% total dietary fiber and 22% soluble dietary fiber and dodok(Codonopsis lanceolata) contained 55% total dietary fiber and 21% soluble dietary fiber. Wild 8% more dietary fiber than cultivated one. Water holding capacities of wild vegetables were higher than commercial wheat bran and soy fiber, but lower in oil absorption. When wild dodok and dalle were wet milled by blade grinding before sieving the dietary fiber content in dodok was increased from 55 to 83 % with increasing the dietary fiber content in dalle form 49% to 69%.

  • PDF

Physical and Chemical Properties of Nano-slag Mixed Mortar

  • Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.145-154
    • /
    • 2010
  • As buildings have become higher and larger, the use of high performance concrete has increased. With this increase, interest in and use of ultra fine powder admixture is also on the rise. The silica fume and BSF are the admixtures currently being used in Korea. However, silica fume is exclusively import dependent because it is not produced in Korea. In the case of BFS, it greatly improves concrete fluidity and long-term strength. But a problem exists in securing early strength. Furthermore, air-cooled slag is being discarded, buried in landfills, or used as road bed materials because of its low activation energy. Therefore, we investigated in this study the usability of nano-slag (both rapidly-chilled and air-cooled) as an alternative material to the silica fume. We conducted a physic-chemical analysis for the nano-slag powder and performed a mortar test to propose quality standards. The analysis and testing were done to find out the industrial usefulness of the BFS that has been grinded to the nano-level.

A Study on Worker Exposure to Asbestos Fibers During Automobile Maintenance (自動車整備業 從事者의 石綿粉塵 暴露에 관한 조사연구)

  • Shin, Yong-Chul;Paik, Nam-Won
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.19-32
    • /
    • 1989
  • This study was performed to evaluate the worker exposure to asbestos fibers in automobile repair shop and brake lining store from August 11 to October 21, 1988. In addition, the exposure of general population near the brake lining store was also evaluated. Results of this study were as follows. 1. Worker exposure level to asbestos fibers in automobile repair shop was 0.1 fibers/cc, well below the Korean standard of 2 fibers/cc, and a half of the U.S. standard of 0.2 fibers/cc. 2. Average worker exposure level to asbestos fibers in brake lining store was 0.35 fibers/cc, which was within the Korean standard of 2 fibers/cc, but exceeded the U.S. standard of 0.2 fibers/cc. 3. Worker exposure levels during the removal of brake dust with the compressed air blowing and the dry brushing were approximately 4 fibers/cc and 0.2 fibers/cc, respectively. During grinding of brake linings with sand paper, asbestos exposure level was 0.3 fibers/cc. 4. Ambient asbestos concentrations outside the brake lining store were 0.1 fibers/cc at the distance of 3-4 m, and 0.01 fibers/cc at the distance of 30 m.

  • PDF

Effect of Hydrophobic Surface Coating on Flowability of Ceramic Tile Granule Powders (표면 소수화 처리를 통한 도자타일 과립 분말의 유동 특성)

  • Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung;Hwang, Kwang-Take
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.425-431
    • /
    • 2019
  • Generally, ceramic tiles for building construction are manufactured by dry forming process using granular powders prepared by spray drying process after mixing and grinding of mineral raw materials. In recent years, as the demand for large ceramic tiles with natural texture has increased, the development of granule powders with high packing ratio and excellent flowability has become more important. In this study, ceramic tile granule powders are coated with hydrophobically treated silica nanoparticles. The effects of hydrophobic silica coating on the flowability of granule powders and the strength of the green body are investigated in detail. Silica nanoparticles are hydrophobically treated with GPTMS(3-glycidoxypropyl trimethoxy silane), which is an epoxy-based silane coupling agent. As the coating concentration increases, the angle of repose and the compressibility decrease. The tap density and flowability index increase after silica coating treatment. These results indicate that hydrophobic treatment can improve the flowability of the granular powder, and prevent cracking of green body at high pressure molding.

An Experimental Study on the Effect of Concrete Surface Treatment Methods on the Bond Strength of Metal Spray Coating (콘크리트 표면처리 방법이 콘크리트 표면 금속용사 피막의 부착강도에 미치는 영향에 관한 실험적 연구)

  • Park, Jin-Ho;Kim, Sang-Yeol;Lee, Han-Seung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.147-154
    • /
    • 2020
  • The exterior finishing of reinforced concrete buildings is one of the important factors to prevent durability and prevent natural environment or disaster such as temperature, snow, wind, rain from the outside as well as external design of buildings. Finishing methods can be divided into wet and dry methods. The wet method using paint is relatively easy to construct, but it requires repair and reinforcement every 1 to 5 years and requires a lot of LCC for maintenance. Finishing method using panel has good durability, but it is difficult to install and expensive. Therefore, in this paper, we evaluate the bond strength for the application of the metal spray method in order to overcome the problems of existing methods. Experimental results show that the sandblast + surface roughness agent(S-R(Y)) has a roughness of 41.16 ㎛ and the bond strength is about 3.19 MPa, which is the highest bond strength. In addition, the grinding + surface roughness agent(G-R(Y)) application showed roughness of about 36.59 ㎛ and secured the bond strength performance of 2.94 MPa.

Potential of Using Maize Cobs in Pig Diets - A Review

  • Kanengoni, A.T.;Chimonyo, M.;Ndimba, B.K.;Dzama, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1669-1679
    • /
    • 2015
  • The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs' digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs.