• Title/Summary/Keyword: Dry Friction

Search Result 356, Processing Time 0.024 seconds

Effect of Hardness of Mating Materials on DLC Tribological Characteristics

  • Na, Byung-Chul;Akihiro Tanaka
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • Diamond-like Carbon(DLC) films were deposited on Si wafers by an RF-plasma-assisted CVD using CH$_4$gas. Tribological tests were conducted with the use of a rotating type ball on a disk friction tester with dry air. This study made use of four kinds of mating balls that were made with stainless steel but subjected to different annealing conditions in order to achieve different levels of hardness. In all load conditions, testing results demonstrated that the harder the mating materials, the lower the friction coefficient was. The friction coefficients were fecund to be lower with austenite mating balls than with fully annealed martensite balls. Conversely, the high friction coefficient found in soft martensite balls appeared to be caused by the larger contact area between the DLC film and the ball. The wear tracks on DLC films and mating balls could prove that effect. Measuring the wear track of both DLC films and mating balls revealed a similar tendency compared to the results of friction coefficients. The wear rate of austenite balls was also less than that of fully annealed martensite balls. Friction eoefficients decrease when applied leads exceed critical amount. The wear track on mating balls showed that a certain amount of material transfer occurs from the DLC film to the mating ball during a high friction process. Raman Spectra analysis Showed that the transferred materials were a kind of graphite and that the contact surface of the DLC film seemed to undergo a phase transition from carbon to graphite during the high friction process.

A Study on the Evaluation of the Friction and Wear Properties for Normalized Ductile Cast Iron (노멀라이징 열처리한 구상 흑연 주철의 마찰.마모특성 평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.440-446
    • /
    • 1999
  • This study is mainly concerned with the friction and wear properties for the specimens of crank shaft which are made of ductile cast iron. The friction and wear tests were carried out for the nor-malized ductile cast iron specimens and their properties were compared with each other at reheat-ing temperatures(550^{\circC,\; 600^{\circ}C,\; 650^{\circ}$) and in dry condition at different friction velocity(0.94 m/s 1.88m/s 2.83m/s) range. After austenized at $910^{\circ}C$ it is observed that the higher the reheating temperature is the hardness becomes decrease which is supposedly attributed to the fact that the amount of pearlite austenite matrix is rduced by reheating after normalizing and that as the reheating temperature goes up the pearlite generated is less and the interval between the pearlites were widened at last to make pearlite globular. At the low velocity the friction coefficient increase in the beginning and gets stabilized as the sliding distance increases. As the friction velocity grows the friction coefficient decreases suppos-edly since the abrasive wear is heavier at low velocity than at the high velocity as the friction tem-perature at low velocity is lower than at high velocity.

  • PDF

Air-side Heat Transfer and Friction Characteristics of Finned Tube Beat Exchangers with Slit Fin or Plain Fin (슬릿과 평판 핀-관 열교환기의 공기측 열전달 및 마찰특성)

  • Kwon, Young-Chul;Chang, Keun-Sun;Park, Byung-Kwon;Kwon, Jeong-Tae;Jeong, Ji-Hwan
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.7-14
    • /
    • 2007
  • An experimental study is performed to investigate the effect of air-side heat transfer and friction on characteristics of finned tube heat exchanger under dry surface and wet surface conditions (RH 50%, 70%). Air enthalpy calorimeter is used to obtain the performance evaluation and analysis of a fined tube heat exchanger. Four finned tube heat exchangers with slit fin or plain fin are tested. The number of tube rows are 2 and 3, and the tube diameter is 7 mm. Air-side heat transfer and friction are presented in terms of j factor and friction factor. At dry surface condition, j factor decreases with increasing Re and j factor of 3 row is lower than that of 2 row. Also, the friction factor of a slit fin is larger than that of a plain fin. At wet surface condition, the heat transfer effect is more significant in the case of the slit fin than the plain fin and 2 row than 3 row. The j factor and friction factor are affected by humidity, tube row and fin configuration.

Analysis on Parameters Affecting the Friction Coefficient in Drawbead Forming of Sheet Metal (드로우비드 성형시 박판재 마찰계수 영향인자 해석)

  • Kim W. T.;Lee D. H.;Suh M.S.;Moon Y. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.668-674
    • /
    • 2005
  • In sheet metal forming, drawbeads are often used to control uneven material flow which may cause deffets such as wrinkles, fractures, surface distortion and springback. Appropriate setting and adjusting of the drawbead force is one of the most important parameters in sheet forming process control. Therefore in this study, drawbead friction test with circular shape bead was performed at various sheets, lubricants(dry, three kinds of lubricants having different viscosities), bead materials and surface treatments of bead surface. The results obtained by drawbead friction test show that the friction and drawing characteristics of deforming panels were mainly influenced by strength of sheet, viscosity of lubricant and hardness of bead surface.

The study on the measurement for the pressure drop and friction factor of corrugated metal pipes (주름관에서의 압력강하와 마찰손실 계측에 관한 연구)

  • Yun, Young-Sun;Kang, Jun-One;Yoo, Jai-Suk;Kim, Hyung-Jung
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.76-80
    • /
    • 2006
  • The data for friction factor of the pipe correlated by Reynolds number and relative roughness have been reported well as a Moody chart. However, the results for corrugated shapes have been not investigated sufficiently. In this research, therefore, the pressure drop and friction factor are obtained. Flexible metal tubes with corrugations for the measurement are made of stainless steel plates. The kinds of tubes for the measurement are 5 annular types and helical types. The pressure drop & the velocity of the flow are obtained by micromanometer & digital pressure sensor, supplying dry air at several steps. Then the pressure drop is calculated for each tube, using the obtained data. The result shows that the pressure drop is strongly influenced by the viscous dissipation of kinetic energy due to the circulation of flows, rather than a viscous friction loss. The pressure drop increased consistently as the Reynolds number increases.

  • PDF

The Evaluation for Slip Risk of Various Hospital's zones (병원 내 다양한 구역의 미끄럼 위험성 평가 연구)

  • Kang, Hyun-Su;Park, Peom
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.81-89
    • /
    • 2016
  • Floor slipperiness is a leading cause in slip and fall accidents which are a major source of occupational injuries in Korea. Researchers have estimated the slip and fall related accidents rank number one or two in number of the injured. The objectives of this study were to find the field contamination effect and improvement countermeasure. Slipping and falling are common accidents in large public facilities, especially facility which vulnerable adults generally use as like hospital. So, we measured the coefficient of friction of several floors on the floor in hospital, under dry and wet using BOT-3000. The results of the coefficient of friction measurements showed that floor type and surface conditions were all significant factors affecting the coefficient of friction. The most surprising finding of this study was that there were significant friction improvement when the floors were properly cleaned with cleaning equipments.

Development of a Testing Machine for Fretting Damage of Aerospace Components (항공부품 프레팅 손상 측정용 시험 장치 개발)

  • Kwon, Hyuk-Jin;Kim, Kyung-Mok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.62-66
    • /
    • 2015
  • In this paper, a fretting testing machine is developed using ball-on-flat test apparatus. Precise micro-slip motion is produced by a linear stage. A relative displacement between a ball and a flat specimen is measured with a laser displacement sensor. Dry friction tests are conducted with AISI 52100 steel balls and cold-rolled high strength steel plates at room temperature and ambient humidity. The evolution of the kinetic friction coefficient is determined. Comparison between measured friction coefficients and those found in the literature is then carried out. Fretting tests with an electro-deposited coating are employed at an amplitude of 0.05 mm. Slip regime is identified with slip ratio. It is demonstrated that a developed testing machine allows determining the friction coefficient under fretting condition.

The Characteristics of Friction and Wear for Automotive Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • 오세두;안종찬;박순철;정원욱;배동호;이영제
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.321-328
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9 (leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X­ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035 m/s (50 rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

Analysis of the Static Friction Coefficient of Contacting Rough Surfaces in Miniature Systems (거친 면 접촉의 정적 마찰계수 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.230-236
    • /
    • 2003
  • In applications such as MEMS and NEMS devices, the adhesion force and contact load may be of the same order of magnitude and the static friction coefficient can be very large. Such large coefficient may result in unacceptable and possibly catastrophic adhesion, stiction, friction and wear. To obtain the static friction coefficient of contacting real surfaces without the assumption of an empirical coefficient value, numerical simulations of the contact load, tangential force, and adhesion force are preformed. The surfaces in dry contact are statistically modeled by a collection of spherical asperities with Gaussian height distribution. The asperity micro-contact model utilized in calculation (the ZMC model), considers the transition from elastic deformation to fully plastic flow of the contacting asperity. The force approach of the modified DMT model using the Lennard-Jones attractive potential is applied to characterize the intermolecular forces. The effect of the surface topography on the static friction coefficient is investigated for cases rough, intermediate, smooth, and very smooth, respectively. Results of the static friction coefficient versus the external force are presented for a wide range of plasticity index and surface energy, respectively. Compared with those obtained by the GW and CEB models, the ZMC model is more complete in calculating the static friction coefficient of rough surfaces.

Friction-Wear Properties of Carburized SNCM (침탄처리한 Ni-Cr-Mo강의 마찰-마모특성)

  • Baek, Seung Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.159-167
    • /
    • 1998
  • In this study, friction-wear test was carried out on the carburized layer depth of a mechanical structure steel SNCM carburized with RX and LPG for 7hrs at $930^{\circ}C$ and also the wear properties of wear loss, wear rate, coefficient of friction, friction force and friction temperature were investigated. The wear properties for carburized layer of SNCM were tested on dry condition at the room temperature by the thrust load of 49~245N range at sliding speed of 0.2m/sec and the sliding speed of 0.2~1.0m/sec range at thrust load of 98N. Wear loss on the depth of carburizing layer was increased with increasing of thrust load and sliding speed, and with decreasing of hardness. The condition of worn surfaces were showed mild wear at less than the thrust load of 98N and sliding speed of 0.6m/sec but were showed severe wear at more than 98N and 0.6m/sec. The friction load and temperature were increased with increasing of thrust load but with increasing sliding speed was appeared minimum at 0.6m/sec. With increasing thrust load the wear rate was increased and the coefficient of friction was decreased, but with increasing sliding speed the wear rate and the coefficient of friction were decreased in 0.2~0.6m/sec and increased in 0.6~1.0m/sec, therefore 0.6m/sec in this testing is a transition velocity.

  • PDF