This study analyzed the connectivity of the dry bulk carrier market before and after COVID-19 to examine the impact of COVID-19 on the global shipping market. Using the Quantile Time Frequency Connectedness methodology, we analyzed the dynamic connectedness of major dry bulk indices: the Capesize Index (BCI), Supramax Index (BSI), Panamax Index (BPI), and Handysize Index (BHSI). The results are as follows. First, the total spillover connectedness of the dry bulk carrier market increased during the entire period and in the short term after the outbreak of COVID-19, while it slightly decreased in the long term. Second, the roles among the indices changed according to market conditions, with COVID-19 causing the BPI to change from a net receiver to a net transmitter in the short term and the BSI in the long term, affecting net spillover connectedness. Third, it was observed that long-term connectivity tended to increase more than short-term connectedness under extreme conditions. Fourth, the phenomenon of strengthened connectedness under extreme market conditions was confirmed. These results provide important insights into understanding short-term market shocks and long-term stability trends, demonstrating that the connectedness among dry bulk carrier markets strengthens in global crisis situations such as COVID-19. This provides a basis for assessing the resilience and vulnerability of the shipping market and offers useful information for investors and policymakers in crisis management and investment strategy formulation.
Purpose: The purpose of this study is to overcome limitations of conventional studies that to predict Baltic Dry Index (BDI). The study proposed applications of Artificial Neural Network (ANN) named Long Short-Term Memory (LSTM) to predict BDI. Methods: The BDI time-series prediction was carried out through eight variables related to the dry bulk market. The prediction was conducted in two steps. First, identifying the goodness of fitness for the BDI time-series of specific ANN models and determining the network structures to be used in the next step. While using ANN's generalization capability, the structures determined in the previous steps were used in the empirical prediction step, and the sliding-window method was applied to make a daily (one-day ahead) prediction. Results: At the empirical prediction step, it was possible to predict variable y(BDI time series) at point of time t by 8 variables (related to the dry bulk market) of x at point of time (t-1). LSTM, known to be good at learning over a long period of time, showed the best performance with higher predictive accuracy compared to Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). Conclusion: Applying this study to real business would require long-term predictions by applying more detailed forecasting techniques. I hope that the research can provide a point of reference in the dry bulk market, and furthermore in the decision-making and investment in the future of the shipping business as a whole.
Journal of the Korea Society of Computer and Information
/
v.26
no.7
/
pp.127-132
/
2021
This paper applies a machine learning model to forecasting freight rates in dry bulk and tanker markets with wavelet decomposition and empirical mode decomposition because they can refect both information scattered in the time and frequency domain. The decomposition with wavelet is outperformed for the dry bulk market, and EMD is the more proper model in the tanker market. This result provides market players with a practical short-term forecasting method. This study contributes to expanding a variety of predictive methodologies for one of the highly volatile markets. Furthermore, the proposed model is expected to improve the quality of decision-making in spot freight trading, which is the most frequent transaction in the shipping industry.
In this study, the relationship between Baltic Dry Index(BDI) and maritime trade volume in the dry cargo market was verified using the vector autoregressive (VAR) model. Data was analyzed from 1992 to 2018 for iron ore, steam coal, coking coal, grain, and minor bulks of maritime trade volume and BDI. Granger causality analysis showed that the BDI affects the trade volume of coking coal and minor bulks but the trade volume of iron ore, steam coal and grain do not correlate with the BDI freight index. Impulse response analysis showed that the shock of BDI had the greatest impact on coking coal at the two years lag and the impact was negligible at the ten years lag. In addition, the shock of BDI on minor cargoes was strongest at the three years lag, and were negligible at the ten years lag. This study examined the relationship between maritime trade volume and BDI in the dry bulk shipping market in which uncertainty is high. As a result of this study, there is an economic aspect of sustainability that has helped the risk management of shipping companies. In addition, it is significant from an academic point of view that the long-term relationship between the two time series was analyzed through the causality test between variables. However, it is necessary to develop a forecasting model that will help decision makers in maritime markets using more sophisticated methods such as the Bayesian VAR model.
The purpose of this investigation is to analyze the synchronization between the representative global freight index, the Baltic Dry bulk Index (BDI) and the China Container Freight Index (CCFI) with monthly data from 2000 to 2016. Using the non-stationarity of the business cycle that is able to include common trends, we employ the Engle-Granger 2 stage co-integration test and found no synchronization. On the contrary, we additionally estimated the causality between the markets and revealed the causality, which implies that the Chinese economy has a significant effect on the global market. The results of this empirical analysis demonstrate that the CCFI of China is appropriate for analyzing the shipping industry. In practice, this means that it is more appropriate to include CCFI in the global market outlook than use it as a substitute for the global freight rate index, the BDI. This is a case study of the synchronization of the economic fluctuations of the shipping industry. It suggests that the economic fluctuations of China need to be considered in the unstable global market forecast. In particular, this case applies to the fluctuations in the shipping industry synchronism and provides important results in scientific terms.
The 2008 global financial crisis was triggered by the Lehman Brothers crisis caused by the sub-prime mortgage crisis in the United States This crisis has had an impact on the globe's dry bulk shipping market by reducing dry bulk cargo volume. An oversupply of dry bulk carriers caused a serious recession in the globe's dry-bulk shipping industry and shipbuilding industry. In this situation, the Korean dry-bulk shipping companies were victims of the quagmire of a long recession since the global financial crisis and could not overcome this crisis. This condition forced them into severe financial risk Thus, it caused many shipping companies to file for bankruptcy. In this study, we classified Korean ocean-going dry-bulk shipping companies into two groups, that is, the solvent group and the insolvent group. We also separated the research period before and after the 2008 global financial crisis. Then we investigated the differences in the major financial ratios of the two groups by t-test and found that some financial ratios such as profitability ratios and growth ratios showed the difference between the two groups with statistical significance. The significance of this study is as follow. First, the shipping company management is also crucial for the systematic management of financial strength and business strategy, it is crucial to manage cargo which a high profitable freight. Second, the shipping company should be managed as a company with continued growth through efficient operation and management of ships.
In this study, vector autoregressive and vector error correction models in the short-run dynamics are considered to analyze the effect of the changes in international crude oil prices on Baltic dry index, Baltic Capesize index and Baltic Panamax index, and the intercorrelations between Capesize and Panamax prices, respectively. First, using the vector autoregressive model, the changes in international crude oil price have a statistically significant positive effect for Capesize at lag 1, for Panamax a significant negative effect at lag 3 and a significant positive effect for Baltic dry index at lag 1. From the impulse response analysis, the international crude oil price causes Baltic dry index to increase in the sort-run and the effect converges on the mean after 3 months. Second, using the vector error correction model, the empirical results for the spillover effects between Capesize and Panamax markets provide that in the case of the deviation from a long-run equilibrium the Panamax price is adjusted toward decreasing. The increases in freight rates of the Capesize market at lag 1 lead to increase the freight rates in Panamax market at present. The Panamax responses from the Capesize shocks increase rapidly for 3 months and the effect converges on the mean after 5 months. The Capesize responses from the Panamax shocks are relatively small, and increase weakly for 3 months and the effect disappears thereafter.
This study sought to confirm the impact of analytical methods and behavioral economic theory factors on decision-making when making chartering decisions in the dry bulk shipping market. This study on chartering decision-making model was began to verify why shipping companies do not make rational decision-making and behavior based on analytical methods such as freight prediction and process of alternative selection in the same market situation. To understand the chartering decision-making model, it is necessary to study the impact of behavioral economic theory such as heuristics, loss aversion, and herding behavior on chartering decision-making. Through AHP analysis, the importance of the method factors relied upon in chartering decision-making. The dependence of the top factors in chartering decision-making was in the following order: market factors, heuristics, internal factors, herding behavior, and loss aversion. Market factors, heuristics, and internal factors. As for detailed factors, spot freight index and empirical intuition were confirmed as the most important factors relied on when making decisions. It was confirmed that empirical intuition is more important than internal analysis, which is an analytical method. This study can be said to be meaningful in that it academically researched and proved the bounded rationality of humans, which cannot be fully rational, and sometimes relies on experience or psychological tendencies, by applying it to the chartering decision-making model in the dry bulk shipping market. It also suggests that in the dry bulk shipping market, which is uncertain and has a high risk of loss due to decision-making, the experience and insight of decision makers have a very important impact on the performance and business profits of the operation part of shipping companies. Even though chartering are a decision-making field that requires judgment and intuition based on heuristics, decision-makers need to be aware of this decision-making model in order to reduce repeated mistakes of deciding contrary to market situation. It also suggests that there is a need to internally research analytical methods and procedures that can complement heuristics such as empirical intuition.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.329-330
/
2021
벌크화물운송은 해상운송시장에서 가장 큰 규모이고 철강 및 에너지 산업을 뒷받침 하는 중요한 시장이다. 또한 운임의 변동성이 가장 큰 시장으로 상당한 수익을 기대할 수 있는 반면에 파산에 이르는 큰 손실이 발생할 수 있기때문에 시장 참여자들은 합리적이고 과학적인 예측을 기반하여 의사결정을 해야 한다. 그러나 해운시장에서는 과학적 의사결정보다는 경험기반의 의사결정에 의존하기 때문에 시황변동성에 취약하다. 본 논문은 벌크운임예측에 신호 분해 방법인 EMD와 인공신경망을 결합한 하이브리드 모델을 적용하여 과학적 예측방법을 제시하고자 한다. 본 논문은 학문적으로 해운시장 운임예측연구에서 거의 시도되지 않았던 시계열분해법과 기계학습기법을 결합한 하이브리드 모델을 제시하였다는데 의미가 있으며 실무적으로는 해운시장에서 빈번이 일어나는 의사결정의 질이 제고되는데 기여할 것으로 기대된다.
The focus of this study is to analyse dynamic relationship among BDI(Baltic Dry-bulk Index, hereafter BDI), forex market and industrial production using monthly data from 2003-2013. Specifically, we have focused on the investigations how monetary and real variable affect shipping industry during recession period. To compare performance between general VAR and Bayesian VAR we first examine DAG(Directed Acyclic Graph) to clarify causality among the variables and then employ MSFE(mean squared forecast error). The overall estimated results from impulse-response analysis imply that BDI has been strongly affected by other shock, such as forex market and industrial production in Bayesian VAR. In particular, Bayesian VAR show better performance than general VAR in forecasting.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.