• Title/Summary/Keyword: Drug stability

Search Result 400, Processing Time 0.026 seconds

Analysis and Stability Test of the Extracts from Dipsaci Radix, Leonuri Herba and Cyperi Rhizoma for Toxicity Study (속단, 익모초 및 향부자의 독성평가를 위한 성분분석 및 안정성 시험)

  • Bae, Yoon-Ho;Huh, Jung-Im;Kwack, Seung-Jun;Seok, Ji-Hyeon;Lee, Jong-Kwon;Kang, Tae-Suk;Woo, Mi-Hee;Choi, Jae-Sue;Min, Byung-Sun
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.1
    • /
    • pp.79-84
    • /
    • 2012
  • A simple and reliable reverse phase HPLC method was developed to determine pharmacologically active marker compounds of Dipsaci Radix, Leonuri Herba and Cyperi Rhizoma. The stability test of water-extract of three natural medicines were examined for six months. However, no significant change in the content of the marker compounds of each extract observed during the time of investigation.

Drug-Release Behavior of Polymeric Prodrugs of Ibuprofen with PEG and Its Derivatives as Polymeric Carriers

  • Lee, Chao-Woo
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.71-77
    • /
    • 2004
  • We have synthesized various types of poly(ethylene glycol) (PEG)-ibuprofen conjugates by nucleophilic substitution of bromo-terminated PEG with ibuprofen-Cs salt. The conversion of the terminal hydroxyl groups to bromo-termini was quantitative, as was the drug conjugation process, which suggests that the present synthetic method is very useful for the preparation of PEG-based prodrugs from pharmaceuticals having carboxyl functionalities. The drug-release behavior of the prodrugs was examined in both phosphate buffer (PBS, pH 7.4) and rat plasma. From the drug-release behavior in PBS, we determined that each prodrug has high storage stability. The drug-release rate was observed to be much faster in rat plasma than in buffer solution as a result of the acceleration effect provided by enzymes present in the plasma. The drug-release rate in rat plasma depends on the degree of molecular aggregation of the prodrugs, which can be changed effectively by the nature of their spacer groups or by the use of Pluronic as the polymer carrier.

Palmitoylpolysaccharide-coated Liposomes As A Potential Oral Drug Carrier (경구용 약물수송체로서의 팔미토일 치환 다당체로 코팅된 리포좀)

  • Hahn, Yang-Hee;Yi, Jung-Woo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • Applications of liposomes as a drug carrier for the oral delivery of poorly-absorbable macromolecular drugs have been limited, because of their instability in gastrointestinal environments including pH, bile salts, and digestive enzymes. Two polysaccharides, dextran(DX) and pullulan(PL), were introduced to the preformed liposomes in order to enhance the stability. Palmitoyl derivatives of polysaccharides, palmitoyldextran(PalDX) and palmitoylpullulan(PalPL), were synthesizd and introduced to the liposomes during preparation for the same purpose of stability. The effects of these polysaccharides coating were evaluated basically by physical properties of particle size distribution and optical microscopy, then compared with uncoated liposomes by the observations of both in vitro stability and in vovo absorption characteristics. The geometric mean diameters of polysaccharide-coated liposomes were greater than that of uncoated liposome, showing the outermost polysaccharide-coated layer under the optical microscopy. In vitro stabilities of uncoated or polysaccharides-coated liposomes were measured by turbidity changes in various pH buffer solutions containing sodium choleate as bile salts. While uncoated liposome was very sensitive to bile salts, polysaccharides-coated liposomes were stable in relatively higher concentrations of sodium choleate, giving the results of better stability of PalDX- and PalPL-coated liposomes than that of DX- and PL-coated liposomes. After liposomal encapsulation of acyclovir(ACV), an antiviral agent as a model drug, it has been administered orally to rats as dose of ACV 40 mg/kg. Plasma concentrations of ACV were assayed by HPLC and analyzed by model-independent pharmacokinetics. Pharmacokinetic parameters of Cmax, tmax, and [AUC] have been compared.

  • PDF

The Application of Ion Chromatographic Method for Bioavailability and Stability Test of Iron Preparations

  • Kim, Young-Ok;Chung, Hye-Joo;Kong, Hak-Soo;Choi, Dong-Woong;Cho, Dae-Hyun
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.288-293
    • /
    • 1999
  • Postabsorptive serum iron level was determined after oral administration of the compounds to human. In serum and whole blood, $Fe^{3+}$ was measured by ion chromatography (IC) using a pyridine-2,6-dicarboxylic acid (PDCA) as an eluent. The serum sample solutions were pretreated with I N HCI and 50% TCA. The whole blood sample solutions were treated with 3 N HCI for 30 min at $125^{\circ}C$. The limit of detection (LOD) of the IC technique is $0.2 {\mu}M$ for$Fe^{2+}$and 0.1 $\mu$M for $Fe^{3+}$. The area under concentration (AUC) can be obtained by the above analytical condition. In addition, to compare the stability of $Fe^{2+}$ to that of $Fe^{3+}$ in pharamaceutical preparations, accelerated stability test was carried out. After storing the samples under $40^{\circ}C$, 75%RH in light-resistant container for various time intervals, the contents of iron of different valencies were determined separately by the IC technique and the change and/or the interchange of among those iron species in preparations was investigated. Iron raw materials are stable, but $Fe^{2+}$ in$Fe^{3+}$ source materials was slightly converted to $Fe^{3+}$ by oxidation. $Fe^{2+}$ in$Fe^{3+}$ source raw materials and $Fe^{3+}$ in $Fe^{2+}$ raw materials are determined as impurities. Therefore, IC technique is found to be an appropriate method for comparative evaluation of dissimilar bioavailability of $Fe^{2+}$ and $Fe^{3+}$, stability of $Fe^{2+}$ and $Fe^{3+}$ raw materials and preparations.

  • PDF

Activity and stability of purified amylase produced by streptomyces aureofaciens 77

  • Ibrahim, A.N.;Ahmed, F.H.;Ibrahim, M.M.K.;Arafa, M.A.I.
    • Archives of Pharmacal Research
    • /
    • v.13 no.1
    • /
    • pp.33-37
    • /
    • 1990
  • The effects of pH values, temperature and some elements on the amylolytic activity and stability of the purified S. aureofacienc 77 amylase were studied in this investigation. The purified enzyme showed its maximum activity at pH 6 within 8 min incubation at $40^{\circ}C$. None of the tested 6 metals showed on stimulatory effect on the enzymatic activity, $Fe^{+++}$, $Cu^{++}$ and $Hg^{++}$ at high dose inhibited the enzyme activity to great extent as compared with $Zn^{++}$, $Mn^{++}$ and $Fe^{++}$ whih gave less effect in this respect. The enzyme liquor was found to be thermolabile, since it lost completely its activity after 4 days incubation under room temperature and showed maximum activity during this period as a result of additions of $Ca^{++}$and NaCl, Gradual reduction was however recorded until activity reached 30% after 60 days of incubation.

  • PDF

Application of Stimuli-responsive Chitosan Micelles for Improved Therapeutic Efficiency of Anticancer Agents (항암제의 치료 효율성을 높이기 위한 다양한 자극 응답성 물질이 개질된 키토산 마이셀의 응용성 고찰)

  • Jeong, Gyeong-Won;Park, Jun-Kyu;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.147-154
    • /
    • 2018
  • Currently, to overcome low therapeutic efficiencies and side effects of anticancer agents, the study of drug carrier based on polymers have been consistently investigated. Although the traditional drug carrier based on polymers displayed an excellent result and significant progress, there has been a problem with the side effect and low therapeutic efficiency because of the premature drug release before reached to the targeted region by the low stability in blood stream and sustained drug release. In this review article, to improve the problem of inefficient drug release, methods were suggested, which can maximize the therapeutic efficiency by increasing the stability in the blood stream and triggering drug release at the target site by introducing a stimuli-responsive substance to the non-toxic and biocompatible natural polymer chitosan.

Development of Controlled Release Oral Drug Delivery System by Membrane-Coating Method-I - Preparation and pharmaceutical evaluation of controlled release acetaminophen tablets-

  • Shim, Chang-Koo;Kim, Ki-Man;Kim, Young-Il;Kim, Chong-Kook
    • Archives of Pharmacal Research
    • /
    • v.13 no.2
    • /
    • pp.151-160
    • /
    • 1990
  • In order to develop a controlled-release oral drug delivery system (DDS) which sustains the plasma acetaminophen (AAP) concentration for a certain period of time, microporous membrane-coated tablets were prepared and evaluated in vitro. Firstly, highly water-soluble core tablet of AAP were prepared with various formulations by wet granulation and compression technique. Then the core tablets were coated with polyvinychloride (PVC) in which micronized sucrose particles were dispersed. Effect of formula compositions of core tablets and coating suspensions on the pharmaceutical characteristics such as drug release kinetics and membrane stability of the coated tablets was investigated in vitro. AAP was released from the coated tablets as a zero-order rate in a pH-independent manner. This independency of AAP release to pH change from 1.2 to 7.2 is favorable for the controlled oral drug delivery, since it will produce a constant drug release in the stomach and intestine regardless of the pH change in the GI tract. Drug release could be extended upto 10 h according to the coating condition. The release rate could be controlled by changing the formula compositions of the core tablets and coating suspensions, coat weight per each tablet, and especially PVC/sucrose ratio and particle size of the sucrose in the coating suspension. The coated tablets prepared in this study had a fairly good pharmaceutical characteristics in vitro, however, overall evaluation of the coated tablet should await in vivo absorption study in man.

  • PDF

Drug Delivery Effect Using Biopolymer Chitosan Nanoparticles (생명고분자 키토산의 나노입자를 이용한 약물전달 효과)

  • Lee, Do Hun;Lee, Sang-wha;Yoo, In Sang;Park, Kwon-pil;Kang, Ik Joong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.790-793
    • /
    • 2005
  • Recently, the interest in the extension of human life and personal health has been increased. Accordingly, many researchers in a pharmacy and a medical world have been making efforts to improve the sustained drug release property and the stability of drug release property in a body. Many biological researches have demonstrated that chitosan derivatives are effective, safe absorption enhancers that can improve the delivery efficiency of drug and vaccine, and they are suitable for controlled drug release because they have good stability, bio-compatibility, and biodegradability. In this study the experiment was performed in vivo by utilizing chitosan nanoparticles as a biopolymer to control drug delivery rate at an optimal temperature, pH, and concentration. It was observed that nanoparticles containing insulin could effectively control the blood glucose at a low level.

Ultrasound-Triggered Drug Release of Hydroxyapatite Coated Liposomes (하이드록시아파타이트 코팅 리포솜의 초음파에 의한 약물방출)

  • Cho, Sung Keun;Wee, Tae In;Ha, Jeung;Cho, Sun Hang;Han, Kun;Han, Hee Dong;Shin, Byung Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.493-498
    • /
    • 2013
  • Liposomes, which can deliver payload at target site, have been studied as drug carrier. However, conventional liposomes have limitation for drug release at target site. Therefore, we developed hydroxyapatite (HA) coated ultrasound sensitive liposomes to increase drug release at target site and to enhance stability in blood stream. Control liposome was prepared using hydrogenated soy phosphatidylcholine (HSPC) and cholesterol, and then we assessed HA coating on the surface of control liposomes using calcium acetate, phosphoric acid, and 25% ammonium solution. Doxorubicin was used as a model drug. Size of HA coated liposomes was 120 nm and encapsulation efficiency of doxorubicin in liposomes was up to 95%. Size of HA coated liposomes are not changed in 30% serum solution, however, the control liposomes was 1.4 fold increased. After ultrasound triggered drug release from liposomes, intracellular efficiency of drug released from HA coated liposomes was 3 fold increased compared to control liposomes. In this study, we developed ultrasound sensitive liposomes to enhance drug release, which will be applied in controlled drug release at disease site.