Browse > Article
http://dx.doi.org/10.14478/ace.2018.1018

Application of Stimuli-responsive Chitosan Micelles for Improved Therapeutic Efficiency of Anticancer Agents  

Jeong, Gyeong-Won (Department of Polymer Science and Engineering, Sunchon National University)
Park, Jun-Kyu (CGbio Co.Ltd)
Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.2, 2018 , pp. 147-154 More about this Journal
Abstract
Currently, to overcome low therapeutic efficiencies and side effects of anticancer agents, the study of drug carrier based on polymers have been consistently investigated. Although the traditional drug carrier based on polymers displayed an excellent result and significant progress, there has been a problem with the side effect and low therapeutic efficiency because of the premature drug release before reached to the targeted region by the low stability in blood stream and sustained drug release. In this review article, to improve the problem of inefficient drug release, methods were suggested, which can maximize the therapeutic efficiency by increasing the stability in the blood stream and triggering drug release at the target site by introducing a stimuli-responsive substance to the non-toxic and biocompatible natural polymer chitosan.
Keywords
chitosan; stimuli-responsive system; selective drug release; anticancer effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Kim, E. S. Lee, K. T. Oh, Z. G. Gao, and Y. H. Bae, Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH, Small, 4, 2043-2050 (2008).   DOI
2 H. Park, W. Park, and K. Na, Doxorubicin loaded singlet-oxygen producible polymeric micelle based on chlorine e6 conjugated pluronic F127 for overcoming drug resistance in cancer, Biomaterials, 35, 7963-7969 (2014).   DOI
3 M. W. Saif, N. A. Podoltsev, M. S. Rubin, J. A. Figueroa, M. Y. Lee, J. Kwon, E. Rowen, J. Yu, and R. O. Kerr, Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer, Cancer Invest., 28, 186-194 (2010).
4 F. Barahuie, D. Dorniani, B. Saifullah, S. Gothai, M. Z. Hussein, A. K. Pandurangan, P. Arulselvan, and M. E. Norhaizan, Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system, Int. J. Nanomed., 12, 2361-2372 (2017).   DOI
5 M. Zhou, K. Wen, Y. Bi, H. Lu, J. Chen, Y. Hu, and Z. Chai, The Application of Stimuli-responsive Nanocarriers for Targeted Drug Delivery, Curr. Top. Med. Chem., 17, 2319-2334 (2017).
6 Z. Amoozgar, J. Park, Q. Lin, and Y. Yeo, Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery, Mol. Pharm., 9, 1262-1270 (2012).   DOI
7 T. Woraphatphadung, W. Sajomsang, T. Rojanarata, T. Ngawhirunpat, P. Tonglairoum, P. Opanasopit, Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery, AAPS PharmSciTech., 19, 1-10 (2017).
8 Y. Lv, H. Huang, B. Yang, H. Liu, Y. Li, and J. Wang, A robust pH-sensitive drug carrier: aqueous micelles mineralized by calcium phosphate based on chitosan, Carbohydr. Polym., 111, 101-107 (2014).   DOI
9 L. Liu, S. Li, L. Liu, D. Deng, and N. Xia, Simple, sensitive and selective detection of dopamine using dithiobis(succinimidylpropionate)-modified gold nanoparticles as colorimetric probes, Analyst, 137, 3794-3799 (2012).   DOI
10 K. S. Blevins, J. H. Jeong, M. Ou, J. H. Brumbach, and S. W. Kim, EphA2 targeting peptide tethered bioreducible poly(cystamine bisacrylamide-diamino hexane) for the delivery of therapeutic pCMV-RAE-1gamma to pancreatic islets, J. Control. Release, 158, 115-122 (2012).   DOI
11 S. Tan, G. Wang, redox-responsive and ph-sensitive nanoparticles enhanced stability and anticancer ability of erlotinib to treat lung cancer in vivo, Drug Des. Devel. Ther., 11, 3519-3529 (2017).   DOI
12 S. Ganta, H. Devalapally, A. Shahiwala, and M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery, J. Control. Release, 126, 187-204 (2008).   DOI
13 F. Puoci, F. Iemma, and N. Picci, Stimuli-responsive molecularly imprinted polymers for drug delivery: a review, Curr. Drug Deliv., 5, 85-96 (2008).   DOI
14 D. Chen and J. Sun, In vitro and in vivo evaluation of PEG-conjugated ketal-based chitosan micelles as pH-sensitive carriers, Polym. Chem., 6, 998-1004 (2015).   DOI
15 J. Li, M. Huo, J. Wang, J. Zhou, J. M. Mohammad, Y. Zhang, Q. Zhu, A. Y. Waddad, and Q. Zhang, Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel, Biomaterials, 33, 2310-2320 (2012).   DOI
16 S. Cerritelli, D. Velluto, and J. A. Hubbell, PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery, Biomacromolecules, 8, 1966-1972 (2007).   DOI
17 J. X. Chen, M. Wang, H. H. Tian, and J. H. Chen, Hyaluronic acid and polyethylenimine self-assembled polyion complexes as pH-sensitive drug carrier for cancer therapy, Colloids Surf. B, 134, 81-87 (2015).   DOI
18 W. Lin, X. Guan, T. Sun, Y. Huang, X. Jing, and Z. Xie, Reduction-sensitive amphiphilic copolymers made via multi-component Passerini reaction for drug delivery, Colloids Surf. B, 126, 217-223 (2015).   DOI
19 J. Bae, A. Maurya, Z. Shariat-Madar, S. N. Murthy, and S. Jo, Novel Redox-responsive amphiphilic copolymer micelles for drug delivery: Synthesis and characterization, AAPS J., 17, 1357-1368 (2015).   DOI
20 C. Sun, X. Li, X. Du, and T. Wang, Redox-responsive micelles for triggered drug delivery and effective laryngopharyngeal cancer therapy, Int. J. Biol. Macromol., 112, 65-73 (2018).   DOI
21 C. Zhao, L. Shao, J. Lu, C. Zhao, Y. Wei, J. Liu, M. Li, Y. Wu, Triple redox responsive poly(ethylene glycol)-polycaprolactone polymeric nanocarriers for fine-controlled drug release, Macromol. Biosci., 17, 1600295 (2017).   DOI
22 J. T. Lin, Z. K. Liu, Q. L. Zhu, X. H. Rong, C. L. Liang, J. Wang, D. Ma, J. Sun, and G. H. Wang, Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles, Colloids Surf. B, 155, 41-50 (2017).   DOI
23 I. S. Kim and I. J. Oh, Drug release from the enzyme-degradable and pH-sensitive hydrogel composed of glycidyl methacrylate dextran and poly(acrylic acid), Arch. Pharm. Res., 28, 983-987 (2005).   DOI
24 Y. Su, Y. Hu, Y. Du, X. Huang, J. He, J. You, H. Yuan, and F. Hu, Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy, Mol. Pharm., 12, 1193-1202 (2015).   DOI
25 M. Vila-Caballer, G. Codolo, F. Munari, A. Malfanti, M. Fassan, M. Rugge, A. Balasso, M. de Bernard, and S. Salmaso, A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment, J. Control. Release, 238, 31-42 (2016).   DOI
26 C. L. Peng, L. Y. Yang, T. Y. Luo, P. S. Lai, S. J. Yang, W. J. Lin, and M. J. Shieh, Development of pH sensitive 2-(diisopropylamino) ethyl methacrylate based nanoparticles for photodynamic therapy, Nanotechnology, 21, 155103 (2010).   DOI
27 T. S. Angeles, P. A. Smanik, C. L. Borders, Jr., and R. E. Viola, Aspartokinase-homoserine dehydrogenase I from Escherichia coli: pH and chemical modification studies of the kinase activity, Biochemistry, 28, 8771-8777 (1989).   DOI
28 J. Lu, Y. Li, D. Hu, X. Chen, Y. Liu, L. Wang, and Y. Zhao, Synthesis and properties of pH-, thermo-, and salt-sensitive modified poly(aspartic acid)/poly(vinyl alcohol) IPN hydrogel and its drug controlled release, Biomed. Res. Int., 2015, 236745 (2015).
29 C. Wu, J. Yang, X. Xu, C. Gao, S. Lu, and M. Liu, Redox-responsive core-cross linked mPEGylated starch micelles as nanocarriers for intracellular anticancer drug release, Eur. Polym. J., 83, 230-243 (2016).   DOI
30 A. Babu, R. Ramesh, Multifaceted Applications of Chitosan in Cancer Drug Delivery and Therapy, Mar. Drugs., 15(4), 96 (2017).   DOI
31 Y. W. Hu, Y. Z. Du, N. Liu, X. Liu, T. T. Meng, B. L. Cheng, J. B. He, J. You, H. Yuan, and F. Q. Hu, Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier, J. Control. Release, 206, 91-100 (2015).   DOI
32 G. Huang, Y. Liu, and L. Chen, Chitosan and its derivatives as vehicles for drug delivery, Drug deliv., 24, 108-113 (2017).   DOI
33 J. Zheng, X. Tian, Y. Sun, D. Lu, and W. Yang, pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery, Int. J. Pharm., 450, 296-303 (2013).   DOI
34 H. Guo and J. C. Kim, Reduction-Sensitive Poly(ethylenimine) Nanogel Bearing Dithiodipropionic Acid, Chem. Pharm. Bull., 65, 718-725 (2017).   DOI
35 A. Ali and S. Ahmed, A review on chitosan and its nanocomposites in drug delivery, Int. J. Biol. Macromol., 109, 273-286 (2018).   DOI
36 K. Dua, M. Bebawy, R. Awasthi, R.K. Tekade, M. Tekade, G. Gupta, T. De Jesus Andreoli Pinto, P.M. Hansbro, Chitosan and its derivatives in nanocarrier based pulmonary drug delivery systems, Pharm Nanotechnol., 5(4), 243-249 (2017).
37 K. Bowman and K. W. Leong, Chitosan nanoparticles for oral drug and gene delivery, Int. J. Nanomedicine, 1, 117-128 (2006).   DOI
38 S. Jana, N. Maji, A. K. Nayak, K. K. Sen, and S. K. Basu, Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery, Carbohydr. Polym., 98, 870-876 (2013).   DOI
39 H. Lu, Y. Dai, L. Lv, and H. Zhao, Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis, PloS One, 9, e84703 (2014).   DOI
40 X. Bai, Z. Bao, S. Bi, Y. Li, X. Yu, S. Hu, M. Tian, X. Zhang, X. Cheng, X. Chen, Chitosan-based thermo/pH double sensitive hydrogel for controlled drug delivery, Macromol. Biosci., 18, 1700305 (2018).   DOI
41 W. Cheng, L. Gu, W. Ren, and Y. Liu, Stimuli-responsive polymers for anti-cancer drug delivery, C, Mater. Sci. Eng. C, 45, 600-608 (2014).   DOI
42 X. Cui, X. Guan, S. Zhong, J. Chen, H. Zhu, Z. Li, F. Xu, P. Chen, and H. Wang, Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release, Ultrason. Sonochem., 38, 145-153 (2017).   DOI
43 Y. Lee, D.H. Thompson, Stimuli-responsive liposomes for drug delivery, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 9, e1450 (2017).   DOI
44 Y. Sheng, J. Hu, J. Shi, L.J. Lee, Stimuli-responsive carriers for controlled intracellular drug release, Curr. Med. Chem., 24, 1-11 (2017).
45 W. C. Lin, D. G. Yu, and M. C. Yang, pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: swelling kinetics and drug delivery properties, Colloids Surf. B, 44, 143-151 (2005).   DOI
46 M. Wang, H. Hu, Y. Sun, L. Qiu, J. Zhang, G. Guan, X. Zhao, M. Qiao, L. Cheng, L. Cheng, and D. Chen, A pH-sensitive gene delivery system based on folic acid-PEG-chitosan - PAMAM-plasmid DNA complexes for cancer cell targeting, Biomaterials, 34, 10120-10132 (2013).   DOI
47 S. Mura, J. Nicolas, and P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nat. Mater., 12, 991-1003 (2013).   DOI
48 W. Xiao, X. Zeng, H. Lin, K. Han, H. Z. Jia, and X. Z. Zhang, Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs, Chem. Commun. (Camb), 51, 1475-1478 (2015).   DOI
49 G. Qing, M. Li, L. Deng, Z. Lv, P. Ding, and T. Sun, Smart drug release systems based on stimuli-responsive polymers, Mini Rev. Med. Chem., 13, 1369-1380 (2013).   DOI
50 Q. Tang, B. Yu, L. Gao, H. Cong, N. Song, C. Lu, Stimuli responsive nanoparticles for controlled anti-cancer drug release, Curr. Med. Chem., 25, 1-30 (2018).   DOI
51 B. Surnar and M. Jayakannan, Stimuli-responsive poly(caprolactone) vesicles for dual drug delivery under the gastrointestinal tract, Biomacromolecules, 14, 4377-4387 (2013).   DOI
52 X. Wu, Y. J. Tan, H. T. Toh, L. H. Nguyen, S. H. Kho, S. Y. Chew, H. S. Yoon, and X. W. Liu, Stimuli-responsive multifunctional glyconanoparticle platforms for targeted drug delivery and cancer cell imaging, Chem. Sci., 8, 3980-3988 (2017).   DOI
53 O. Adeoye and H. Cabral-Marques, Cyclodextrin nanosystems in oral drug delivery: A mini review, Int. J. Pharm., 531, 521-531 (2017).   DOI
54 J. Y. Lee, U. Termsarasab, M. Y. Lee, D. H. Kim, S. Y. Lee, J. S. Kim, H. J. Cho, and D. D. Kim, Chemosensitizing indomethacin-conjugated chitosan oligosaccharide nanoparticles for tumor-targeted drug delivery, Acta Biomater., 57, 262-273 (2017).   DOI
55 W. Cao, Y. Gu, M. Meineck, and H. Xu, The combination of chemotherapy and radiotherapy towards more efficient drug delivery, Chem. Asian J., 9, 48-57 (2014).   DOI
56 Y. Xin, Q. Huang, J. Q. Tang, X. Y. Hou, P. Zhang, L. Z. Zhang, and G. Jiang, Nanoscale drug delivery for targeted chemotherapy, Cancer Lett., 379, 24-31 (2016).   DOI
57 Q. Wang, P. Liu, Y. Sun, H. Wu, X. Li, Y. Duan, and Z. Zhang, Pluronic-poly[alpha-(4-aminobutyl)-1-glycolic acid] polymeric micelle-like nanoparticles as carrier for drug delivery, J. Nanosci. Nanotechnol., 14, 4843-4850 (2014).   DOI
58 P. S. Glass and J. G. Reves, Drug delivery system to improve the perioperative administration of intravenous drugs: computer assisted continuous infusion (CACI), Anesth. Analg., 81, 665-667 (1995).
59 P. K. Paul, A. Treetong, and R. Suedee, Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system, Acta Pharm., 67, 149-168 (2017).
60 S. H. Yalkowsky, J. F. Krzyzaniak, and G. H. Ward, Formulation-related problems associated with intravenous drug delivery, J. Pharm. Sci., 87, 787-796 (1998).   DOI
61 P. R. Kamath and D. Sunil, Nano-chitosan particles in anticancer drug delivery: An up-to-date review, Mini Rev. Med. Chem., 17, 1457-1487 (2017).
62 F. Ye, H. Guo, H. Zhang, and X. He, Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system, Acta Biomater., 6, 2212-2218 (2010).   DOI
63 B. N. Ho, C. M. Pfeffer, and A. T. K. Singh, Update on nanotechnology-based drug delivery systems in cancer treatment, Anticancer Res., 37, 5975-5981 (2017).
64 T. C. Lin, K. H. Hung, C. H. Peng, J. H. Liu, L. C. Woung, C. Y. Tsai, S. J. Chen, Y. T. Chen, and C. C. Hsu, Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration, J. Chin. Med. Assoc., 78, 635-641 (2015).   DOI
65 C. Peptu, R. Rotaru, L. Ignat, A. C. Humelnicu, V. Harabagiu, C. A. Peptu, M. M. Leon, F. Mitu, E. Cojocaru, A. Boca, and B. I. Tamba, Nanotechnology approaches for pain therapy through transdermal drug delivery, Curr. Pharm. Des., 21, 6125-6139 (2015).   DOI
66 J. Zhong, Nanotechnology for drug delivery: Part II, Curr. Pharm. Des., 21, 4129-4130 (2015).   DOI
67 M. Basha, Nanotechnology as a promising strategy for anticancer drug delivery, Curr Drug Deliv., 14, 1-13 (2017).
68 M. L. Cuestas, Therapy of chronic hepatitis C in the era of nanotechnology: Drug delivery systems and liver targeting, Mini Rev. Med. Chem., 17, 295-304 (2017).   DOI
69 Z. He, X. Wan, A. Schulz, H. Bludau, M. A. Dobrovolskaia, S. T. Stern, S. A. Montgomery, H. Yuan, Z. Li, D. Alakhova, M. Sokolsky, D. B. Darr, C. M. Perou, R. Jordan, R. Luxenhofer, and A. V. Kabanov, A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity, Biomaterials, 101, 296-309 (2016).   DOI
70 Y. Zhang, L. Chen, J. Ding, K. Shen, M. Yang, C. Xiao, X. Zhuang, and X. Chen, Self-programmed pH-sensitive polymeric prodrug micelle for synergistic cancer therapy, J. Control. Release, 213, e135-136 (2015).
71 W. Zhuang, B. Ma, G. Liu, X. Chen, and Y. Wang, A fully absorbable biomimetic polymeric micelle loaded with cisplatin as drug carrier for cancer therapy, Regen. Biomater., 5, 1-8 (2018).   DOI