• Title/Summary/Keyword: Drug Delivery Systems:

Search Result 248, Processing Time 0.025 seconds

Preparation and Characterization of Casein Nanoparticles with Various Metal Ions as Drug Delivery Systems (다양한 금속 이온을 이용한 카세인 단백질 나노입자 형성 및 약물 전달체 특성 연구)

  • Minju Kim;Seulgi Lee;Joon Sig Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.121-125
    • /
    • 2023
  • Casein is a milk protein and one of the most important nutrients in milk. The composition is over 80% in cow's milk and about 20~45% in human's milk. Casein is highly biocompatible and biodegradable, so it has been studied for various biomedical materials applications as well as drug delivery systems. It is widely known that casein can be prepared as nanoparticles in the presence of the Ca2+ metal ion. Because casein is amphiphilic, hydrophobic drugs could be loaded inside to form a protein-based drug delivery system. In this study, we studied the optimum conditions for casein nanoparticle formation using natural metal ions present in the body, such as calcium, magnesium, zinc, and iron. It was confirmed that nanoparticles have a uniform size of around 150 nm and negative zeta potential values. In addition, it was demonstrated that casein nanoparticles have a cell viability of more than 80% and efficient intracellular uptake properties using confocal microscopy. From the results, it was also shown that the casein nanoparticles prepared using various metal ions have the potential to be biocompatible drug delivery carriers.

An In sight into Novel Drug Delivery System: In Situ Gels

  • Bashir, Rabiah;Maqbool, Mudasir;Ara, Irfat;Zehravi, Mehrukh
    • CELLMED
    • /
    • v.11 no.1
    • /
    • pp.6.1-6.7
    • /
    • 2021
  • In situ gelling devices, as they enter the body, are dosage forms in the shape of the sol but turn into gel types under physiological circumstances. Transition from sol to gel is contingent on one or a mixture of diverse stimuli, such as transition of pH control of temperature, irradiation by UV, by the occurrence of certain ions or molecules. Such characteristic features may be commonly employed in drug delivery systems for the production of bioactive molecules for continuous delivery vehicles. The technique of in situ gelling has been shown to be impactful in enhancing the potency of local or systemic drugs supplied by non-parenteral pathways, increasing their period of residence at the absorption site. Formulation efficacy is further improved with the use of mucoadhesive agents or the use of polymers with both in situ gelling properties and the ability to bind with the mucosa/mucus. The most popular and common approach in recent years has provided by the use of polymers with different in situ gelation mechanisms for synergistic action between polymers in the same formulation. In situ gelling medicine systems in recent decades have received considerable interest. Until administration, it is in a sol-zone and is able to form gels in response to various endogenous factors, for e.g elevated temperature, pH changes and ions. Such systems can be used in various ways for local or systemic supply of drugs and successfully also as vehicles for drug-induced nano- and micro-particles. In this review we will discuss about various aspects about use of these in situ gels as novel drug delivery systems.

Extracted Catechin Incorporated Chitosan Patch for Dermal Drug Delivery Systems

  • Seunghwan Choy
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.458-464
    • /
    • 2023
  • In order to develop catechin patches for skin regeneration at wound sites, patches with varying concentrations of catechin and chitosan were manufactured. An optimal composition ratio was determined by adjusting the drug release rate and amount, to maximize efficiency. The catechin used in this study was extracted from green tea leaves using a solvent/ultrasonication method, and its characteristics were confirmed through Fourier transform-infrared spectroscopy (FT-IR) and high-performance liquid chromatography (HPLC) analyses. Patches were prepared with different concentrations of catechin and chitosan, and various properties were analyzed using techniques such as FT-IR, water contact angle analysis, and UV-Vis spectroscopy. It was observed that as the chitosan concentration increased, the release of catechin slowed down or almost ceased. A patch manufactured with 1.5 mg/cm2 of catechin at a 1 % chitosan concentration exhibited a high initial release rate over 24 h and demonstrated cellular biocompatibility. Consequently, these patches, with tailored release characteristics based on the concentrations of chitosan and catechin, hold promise for use as drug delivery systems in wound healing applications.

Protein Drug Oral Delivery: The Recent Progress

  • Lee, Hye-J.
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.572-584
    • /
    • 2002
  • Rapid development in molecular biology and recent advancement in recombinant technology increase identification and commercialization of potential protein drugs. Traditional forms of administrations for the peptide and protein drugs often rely on their parenteral injection, since the bioavailability of these therapeutic agents is poor when administered nonparenterally. Tremendous efforts by numerous investigators in the world have been put to improve protein formulations and as a result, a few successful formulations have been developed including sustained-release human growth hormone. For a promising protein delivery technology, efficacy and safety are the first requirement to meet. However, these systems still require periodic injection and increase the incidence of patient compliance. The development of an oral dosage form that improves the absorption of peptide and especially protein drugs is the most desirable formulation but one of the greatest challenges in the pharmaceutical field. The major barriers to developing oral formulations for peptides and proteins are metabolic enzymes and impermeable mucosal tissues in the intestine. Furthermore, chemical and conformational instability of protein drugs is not a small issue in protein pharmaceuticals. Conventional pharmaceutical approaches to address these barriers, which have been successful with traditional organic drug molecules, have not been effective for peptide and protein formulations. It is likely that effective oral formulations for peptides and proteins will remain highly compound specific. A number of innovative oral drug delivery approaches have been recently developed, including the drug entrapment within small vesicles or their passage through the intestinal paracellular pathway. This review provides a summary of the novel approaches currently in progress in the protein oral delivery followed by factors affecting protein oral absorption.

SMEDDS (Self-MicroEmulsifying Drug Delivery System) As An Intraurethral Prostaglandin E1 Delivery System

  • Lee, Sang-Kil;Jeon, Sang-Ok;Kang, Jae-Seon;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.291-295
    • /
    • 2007
  • Prostaglandin $E_1\;(PGE_1)$ was formulated as two self-microemulsifying drug delivery systems (SMEDDS) composed of Cremophor $EL^{(R)}$ or Cremophor $ELP^{(R)}$ as a surfactant, ethanol as a cosurfactant and Labrafac $CC^{(R)}$ as an oil to develop liquid preparation for the treatment of erectile dysfunction. In pseudo-ternary phase diagram, viscous gel area and microemulsion area were defined. In the measurement of viscosity, the viscosity of two formulations increased gradually upon the addition of water and it decreased from the water contents over 40%. With excessive water, the present systems formed a microemulsion spontaneously. From these results, rte could expect that the present liquid $PGE_1$ SMEDDS formulations might stay within the urethra in the viscous state when contacting the moisture of the urethra and can be easily eliminated by urination. In long-term stability study, we could select one formulation more stable at the shelf storage condition of $4^{\circ}C$.

Synthesis and Characterization of Novel pH-Sensitive Hydrogels Containing Ibuprofen Pen dents for Colon-Specific Drug Delivery

  • Mahkam, Mehrdad;Poorgholy, Nahid;Vakhshouri, Laleh
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.709-713
    • /
    • 2009
  • The aim of this study was to develop novel intestinal specific drug delivery systems with pH sensitive swelling and drug release properties. The carboxyl group of ibuprofen was converted to a vinyl ester group by reacting ibuprofen and vinyl acetate as an acylating agent in the presence of catalyst. The glucose-6-acrylate-1, 2, 3, 4-tetraacetate (GATA) monomer was prepared under mild conditions. Cubane-1, 4-dicarboxylic acid (CDA) linked to two 2-hydroxyethyl methacrylate (HEMA) group was used as the crosslinking agent (CA). Methacrylic-type polymeric prodrugs were synthesized by the free radical copolymerization of methacrylic acid, vinyl ester derivative of ibuprofen (VIP) and GATA in the presence of cubane cross linking agent. The structure of VIP was characterized and confirmed by FTIR, $^1H$ NMR and $^{13}C$ NMR spectroscopy. The composition of the cross-linked three-dimensional polymers was determined by FTIR spectroscopy. The hydrolysis of drug polymer conjugates was carried out in cel-lophane membrane dialysis bags, and the in vitro release profiles were established separately in enzyme-free simulated gastric and intestinal fluids (SGF, pH 1 and SIF, pH 7.4). The detection of a hydrolysis solution by UV spectroscopy at selected intervals showed that the drug can be released by hydrolysis of the ester bond between the drug and polymer backbone at a low rate. Drug release studies showed that increasing the MAA content in the copolymer enhances the rate of hydrolysis in SIP. These results suggest that these polymeric prodrugs can be useful for the release of ibuprofen in controlled release systems.

A Numerical Study of the Performance of a Contoured Shock Tube for Needle-free Drug Delivery

  • Rasel, Md. Alim Iftekhar;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • In recent years a unique drug delivery system named as the transdermal drug delivery system has been developed which can deliver drug particles to the human skin without using any external needle. The solid drug particles are accelerated by means of high speed gas flow through a shock tube imparting enough momentum so that particles can penetrate through the outer layer of the skin. Different systems have been tried and tested in order to make it more convenient for clinical use. One of them is the contoured shock tube system (CST). The contoured shock tube consists of a classical shock tube connected with a correctly expanded supersonic nozzle. A set of bursting membrane are placed upstream of the nozzle section which retains the drug particle as well as initiates the gas flow (act as a diaphragm in a shock tube). The key feature of the CST system is it can deliver particles with a controllable velocity and spatial distribution. The flow dynamics of the contoured shock tube is analyzed numerically using computational fluid dynamics (CFD). To validate the numerical approach pressure histories in different sections on the CST are compared with the experimental results. The key features of the flow field have been studied and analyzed in details. To investigate the performance of the CST system flow behavior through the shock tube under different operating conditions are also observed.

Controlled-Release Pelletized Dosage Forms Using the Extrusion-Spheronization Process

  • Rhee, Yun-Seok;Lee, Jae-Hwi;Lee, Beom-Jin;Park, Eun-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.103-112
    • /
    • 2010
  • Pellets, which are multiple-unit dosage systems, have the several therapeutic advantages over single-unit dosage systems in oral drug delivery. This review focuses on the current status and explores extrusion-spheronization technique with special attention to controlled-release application of pellets including coated pellets for delayed release formulations, coated pellets for colon delivery, coated pellets for sustained drug delivery, sustained-release matrix pellets, pellets compressed into tablets, bioadhesive pellets, floating pellets, and pelletization with solubilization techniques.

Evaluation of the cytotoxicity of gold nanoparticle-quercetin complex and its potential as a drug delivery vesicle

  • Pak, Pyo June;Go, Eun Byeol;Hwang, Min Hee;Lee, Dong Gun;Cho, Mi Ju;Joo, Yong Hoon;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.145-147
    • /
    • 2016
  • Recently, conjugates of medicinal herb-derived bioflavonoids, such as quercetin, and gold nanoparticles (GNPs) have gained attention as targeted drug delivery systems. In the present study, because quercetin is an important flavonoid with anti-cancer, anti-inflammatory, and anti-oxidant properties, GNP-quercetin complexes (GNPQs) were synthesized to investigate possible adverse effects such as cytotoxicity. We found that while quercetin was cytotoxic, GNPQs were not cytotoxic towards the RAW 264.7 and THP-1 cell lines. Therefore, GNPQs may serve as a potential drug delivery system for cancer treatment.