• Title/Summary/Keyword: Drosophila development related gene

Search Result 4, Processing Time 0.02 seconds

Screening and Characterization of Drosophila Development Mutants Using Single P[en-lacZ] Element Mutagenesis (Drosophila single P[en-lacZ] element mutagenesis를 이용한 발생 관련 돌연변이체 작성)

  • Ha, Hye-Yeong;Lee, Heui-Jung;Park, Soon-Hee;Yoo, Mi-Ae;Lee, Won-Ho
    • Journal of Life Science
    • /
    • v.7 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • Single P[en-lacZ] element including 5.7 kb of engrailed upstream sequences and the E. coli lacZ fusion gene, localized on 48A in rxyho25 strain was transposed to different sites in the Drosophila genome by the jumpstart technique. From 3315 individual genetic crosses, 113 new insertion lines carrying P[en-lacZ] inserted at different sites were obtained. $\beta$-Galactosidase expression in larval tissues of 113 insertion lines were detected by X-gal staining. & among 113 lines have been indentified to be for recessive lethal mutations. Among 7 lines, the #1119 line being lethal during embryogenesis was examined about the ${\beta}$$-Galactosidase expression, nuclear behavior and cellularization pattern during embryogenesis. The P[en-lacZ] insertion lines obtained in this study could be utilized for studying structure and function of the Drosophila development-related genes.

  • PDF

Potential involvement of Drosophila flightless-1 in carbohydrate metabolism

  • Park, Jung-Eun;Jang, Jinho;Lee, Eun Ji;Kim, Su Jung;Yoo, Hyun Ju;Lee, Semin;Kang, Min-Ji
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.462-467
    • /
    • 2018
  • A previous study of ours indicated that Drosophila flightless-1 controls lipid metabolism, and that there is an accumulation of triglycerides in flightless-1 (fliI)-mutant flies, where this mutation triggers metabolic stress and an obesity phenotype. Here, with the aim of characterizing the function of FliI in metabolism, we analyzed the levels of gene expression and metabolites in fliI-mutant flies. The levels of enzymes related to glycolysis, lipogenesis, and the pentose phosphate pathway increased in fliI mutants; this result is consistent with the levels of metabolites corresponding to a metabolic pathway. Moreover, high-throughput RNA sequencing revealed that Drosophila FliI regulates the expression of genes related to biological processes such as chromosome organization, carbohydrate metabolism, and immune reactions. These results showed that Drosophila FliI regulates the expression of metabolic genes, and that dysregulation of the transcription controlled by FliI gives rise to metabolic stress and problems in the development and physiology of Drosophila.

Siah Ubiquitin Ligases Modulate Nodal Signaling during Zebrafish Embryonic Development

  • Kang, Nami;Won, Minho;Rhee, Myungchull;Ro, Hyunju
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.389-398
    • /
    • 2014
  • Siah acts as an E3 ubiquitin ligase that binds proteins destined for degradation. Extensive homology between siah and Drosophila Siah homologue (sina) suggests their important physiological roles during embryonic development. However, detailed functional studies of Siah in vertebrate development have not been carried out. Here we report that Siah2 specifically augments nodal related gene expression in marginal blastomeres at late blastula through early gastrula stages of zebrafish embryos. Siah2 dependent Nodal signaling augmentation is confirmed by cell-based reporter gene assays using 293T cells and 3TP-luciferase reporter plasmid. We also established a molecular hierarchy of Siah as a upstream regulator of FoxH1/Fast1 transcriptional factor in Nodal signaling. Elevated expression of nodal related genes by overexpression of Siah2 was enough to override the inhibitory effects of atv and lft2 on the Nodal signaling. In particular, E3 ubiquitin ligase activity of Siah2 is critical to limit the duration and/or magnitude of Nodal signaling. Additionally, since the embryos injected with Siah morpholinos mimicked the atv overexpression phenotype at least in part, our data support a model in which Siah is involved in mesendoderm patterning via modulating Nodal signaling.

Functional analysis of Bombyx mori Decapentaplegic gene for bone differentiation in a mammalian cell

  • Park, Seung-Won;Goo, Tae-Won;Choi, Gwang-Ho;Kang, Seok-Woo;Kim, Sung-Wan;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.1
    • /
    • pp.159-165
    • /
    • 2013
  • Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF-${\beta}$) superfamily and are involved in osteoblastic differentiation. The largest TGF-${\beta}$ superfamily subgroup shares genetic homology with human BMPs (hBMPs) and silkworm decapentaplegic (dpp). In addition, hBMPs are functionally interchangeable with Drosophila dpp. Bombyx mori dpp may induce bone formation in mammalian cells. To test this hypothesis, we synthesized the 1,285-base pairs cDNA of full-length B. mori dpp using total RNAs obtained from the fat body of 3-day-old of the $5^{th}$ instar larvae and cloned the cDNA into the pCEP4 mammalian expression vector. Next, B. mori dpp was expressed in C3H10T1/2 cells. The target cells transfected with the pCEP4-Bm dpp plasmid showed biological functions similar to those of osteogenic differentiation induction growth factors such as hBMPs. We determined the relative mRNA expression rates of Runt-related transcription factor 2 (RUNX2), osterix, osteocalcin, and alkaline phosphatase (ALP) to validate the osteoblast-specific differentiation effects of B. mori dpp by performing quantitative real-time RT-PCR. Interestingly, mRNA expression levels of the 3 marker genes except RUNX2, in cells expressing B. mori dpp were much higher than those in control cells and C3H10T1/2 cells transfected with pCEP4. These results suggested that B. mori dpp signaling regulates osterix expression during osteogenic differentiation via RUNX2-independent mechanisms.