Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0032

Siah Ubiquitin Ligases Modulate Nodal Signaling during Zebrafish Embryonic Development  

Kang, Nami (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University)
Won, Minho (Program in Genomics of Differentiation, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health)
Rhee, Myungchull (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University)
Ro, Hyunju (Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University)
Abstract
Siah acts as an E3 ubiquitin ligase that binds proteins destined for degradation. Extensive homology between siah and Drosophila Siah homologue (sina) suggests their important physiological roles during embryonic development. However, detailed functional studies of Siah in vertebrate development have not been carried out. Here we report that Siah2 specifically augments nodal related gene expression in marginal blastomeres at late blastula through early gastrula stages of zebrafish embryos. Siah2 dependent Nodal signaling augmentation is confirmed by cell-based reporter gene assays using 293T cells and 3TP-luciferase reporter plasmid. We also established a molecular hierarchy of Siah as a upstream regulator of FoxH1/Fast1 transcriptional factor in Nodal signaling. Elevated expression of nodal related genes by overexpression of Siah2 was enough to override the inhibitory effects of atv and lft2 on the Nodal signaling. In particular, E3 ubiquitin ligase activity of Siah2 is critical to limit the duration and/or magnitude of Nodal signaling. Additionally, since the embryos injected with Siah morpholinos mimicked the atv overexpression phenotype at least in part, our data support a model in which Siah is involved in mesendoderm patterning via modulating Nodal signaling.
Keywords
antivin/Lft1; body patterning; FoxH1/Fast1; Nodal; Siah2; zebrafish;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 House, C.M., Moller, A., and Bowtell, D.L. (2009). Siah protein: novel drug targets in the ras and hypoxia pathways. Cancer Res. 69, 8835-8838.   DOI   ScienceOn
2 Houston, D.W., and Wylie, C. (2005). Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. Development 132, 4845-4855.   DOI   ScienceOn
3 Hu, G., Chung, Y.L., Glover, T., Valentine, V., Look, A.T., and Fearon, E.R. (1997). Characterization of human homologs of the Drosophila seven in absentia (sina) gene. Genomics 46, 103-111.   DOI   ScienceOn
4 Huelsken, J., and Birchmeier, W. (2001). New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547-553.   DOI   ScienceOn
5 Iratni, R., Yan, Y.T., Chen, C., Ding, J., Zhang, Y., Price, S.M., Reinberg, D., and Shen, M.M. (2002). Inhibition of excess nodal signaling during mouse gastrulation by the transcriptional corepressor DRAP1. Science 298, 1996-1999.   DOI   ScienceOn
6 Anuppalle, M., Maddirevula, S., Huh, T.R., and Rhee, M. (2013). Ubiquitin proteasome system networks in the neurological disorder. Anim. Cells Syst. 17, 383-387.   DOI   ScienceOn
7 Attisano, L., Silvestri, C., Izzi, L., and Labbe, E. (2001). The transcriptional role of Smads and FAST (FoxH1) in TGF-$\beta$ and activin signalling. Mol. Cell. Endocrinol. 180, 3-11.   DOI   ScienceOn
8 Bisgrove, B.W., Essner, J.J., and Yost, H.J. (1999). Regulation of midline development by antagonism of lefty and nodal signaling. Development 236, 3253-3262.
9 Carthew, R.W., and Rubin, G.M. (1990). seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63, 561-577.   DOI   ScienceOn
10 Chen, X., Weisberg, E., Fridmacher, V., Watanabe, M., Naco, G., and Whitman, M. (1997). Smad4 and FAST-1 in the assembly of activin-responsive factor. 389, 85-89.   DOI   ScienceOn
11 Erter, C.E., Solnica-Krezel, L., and Wright, C.V. (1998). Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev. Biol. 204, 361-372.   DOI   ScienceOn
12 Erter, C.E., Wilm, T.P., Basler, N., Wright, C.V., and Solnica-Krezel, L. (2001). Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128, 3571-3583.
13 Feldman, B., Gates, M.A., Egan, E.S., Dougan, S.T., Rennebeck, G., Sirotkin, H.I., Schier, A.F., and Talbot, W.S. (1998). Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181-185.   DOI   ScienceOn
14 Thisse, B., Wright, C.V., and Thisse, C. (2000). Activin- and Nodalrelated factors control antero-posterior patterning of the zebrafish embryo. Nature 403, 425-428.   DOI   ScienceOn
15 Westerfield, M. (1995). The Zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio) (University of Oregon Press).
16 Whitman, M. (2001). Nodal signaling in early vertebrate embryos: themes and variations. Dev. Cell 1, 605-617.   DOI   ScienceOn
17 Wong, C.S., and Moler, A. (2013). Siah: a promising anticancer target. Cancer Res. 73, 2400-2406.   DOI   ScienceOn
18 Ro, H., Kim, K.E., Huh, T.L., Lee, S.-K., and Rhee, M. (2003). Expression pattern of Siaz gene during the zebrafish embryonic development. Gene Exp. Patterns 3, 483-488.   DOI   ScienceOn
19 Ro, H., Jang, Y., and Rhee, M. (2004a). The ring domain of Siaz, the zebrafish homologue of Drosophila seven in absentia, is essential for cellular growth arrest. Mol. Cells 17, 160-165.
20 Ro, H., Soun, K., Kim, E-J., and Rhee, M. (2004b). Novel vector systems optimized for injecting in vitro-synthesized mRNA into zebrafish embryos. Mol. Cells 17, 373-376.
21 Ro, H., Won, M., Lee, S.U., Kim, K.E., Huh, H.L., Kim, C.H., and Rhee, M. (2005). Sinup, a novel Siaz-interacting nuclear protein, modulates neural plate formation in the zebrafish embryos. Biochem. Biophys. Res. Commun. 332, 993-1003.   DOI   ScienceOn
22 Sirotkin, H.I., Gates, M.A., Kelly, P.D., Schier, A.F., and Talbot, W.S. (2000). Fast1 is required for the development of dorsal axial structures in zebrafish. Curr. Biol. 10, 1051-1054.   DOI   ScienceOn
23 Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., and Ekker, S.C. (2007). p53 activation by knockdown technologies. PLoS Genet. 3, e78.   DOI   ScienceOn
24 Schier, A.F., and Talbot, W.S. (2001). Nodal signaling and the zebrafish organizer. Int. J. Dev. Biol. 45, 289-297.
25 Schier, A.F., and Talbot, W.S. (2005). Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 39, 561-613.   DOI   ScienceOn
26 Tang, A.H., Neufeld, T.P., Kwan, E., and Rubin, G.M. (1997). PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism. Cell 90, 459-467.   DOI   ScienceOn
27 Thisse, C., and Thisse, B. (1999). Antivin, a novel and divergent member of the TGF-$\beta$ superfamily, negatively regulates mesoderm induction. Development 126, 229-240.
28 Matsuzawa, S., Takayama, S., Froesch, B.A., Zapata, J.M., and Reed, J.C. (1998). p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 17, 2736-2747.   DOI   ScienceOn
29 Medhioub, M., Vaury, C., Hamelin, R., and Thomas, G. (2000). Lack of somatic mutation in the coding sequence of SIAH1 in tumors hemizygous for this candidate tumor suppressor gene. Int. J. Cancer 87, 794-797.   DOI
30 Moller, A., House, C.M., Wong, C.S., Scanlon, D.B., Liu, M.C., Ronai, Z., and Bowtell, D.D. (2009). Inhibition of Siah ubiquitin ligase function. Oncogene 28, 289-296.   DOI   ScienceOn
31 Qi, J., Nakayama, K., Gaitonde, S., Goydos, J.S., Krajewski, S., Eroshkin, A., Bar-Sagi, D., Bowtell, D., and Ronai, Z. (2008). The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc. Natl. Acad. Sci. USA 105, 16713-16718.   DOI   ScienceOn
32 Nadeau, R.J., Toher, J.L., Yang, X., Kovalenko, D., and Friesel, R. (2006). Regulation of Sprouty2 stability by mammalian Sevenin-Absentia homolog 2. J. Cell Biochem. 100, 151-160.
33 Pogoda, H.M., and Meyer, D. (2002). Zebrafish Smad7 is regulated by Smad3 and BMP signals. Dev. Dyn. 224, 334-349.   DOI   ScienceOn
34 Pogoda, H.M., Solnica-Krezel, L., Driever, W., and Meyer, D. (2000). The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr. Biol. 10, 1041-1049.   DOI   ScienceOn
35 Qi, J., Kim, H., Scortegagna, M., and Ronai, Z.A. (2013). Regulators and effectors of Siah ubiquitin ligases. Cell Biochem. Biophys. 67, 15-24.   DOI   ScienceOn
36 Rebagliati, M.R., Toyama, R., Haffter, P., and Dawid, I.B. (1998). cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl. Acad. Sci. USA 95, 9932-9937.   DOI
37 Johnsen, S.A., Subramaniam, M., Monroe, D.G., Janknecht, R., and Spelsberg, T.C. (2002). Modulation of transforming growth factor (TGF-$\beta$)/Smad transcriptional responses through targeted degradation of TGF-$\beta$-inducible early gene-1 by human seven in absentia homologue. J. Biol. Chem. 277, 30754-30759.   DOI   ScienceOn
38 Juuti-Uusitalo, K.M., Kaukinen, K., Maki, M., Tuimala, J., and Kainulainen, H. (2006). Gene expression in TGFbeta-induced epithelial cell differentiation in a three-dimensional intestinal epithelial cell differentiation model. BMC Genomics 7, 279.   DOI
39 Liao, Y., Zhang, M., and Lonnerdal, B. (2012). Growth factor TGF-$\beta$ induces intestinal epithelial cell (IEC-6) differentiation: miR-146b as a regulatory component in the negative feedback loop. Genes Nutr. 8, 69-78.
40 Langdon, Y.G., and Mullins, M.C. (2011). Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu. Rev. Genet. 45, 357-377.   DOI   ScienceOn
41 Liu, J., Stevens, J., Rote, C.A., Yost, H.J., Hu, Y., Neufeld, K.L., White, R.L., and Matsunami, N. (2001). Siah-1 mediates a novel $\beta$-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol. Cell 7, 927-936.   DOI   ScienceOn
42 Lu, F.I., Thisse, C., and Thisse, B. (2011). Identification and mechanism of regulation of the zebrafish dorsal determinant. Proc. Natl. Acad. Sci. USA 108, 15876-15880.   DOI   ScienceOn
43 Frew, I.J., Hammond, V.E., Dickins, R.A., Quinn, J.M., Walkley, C.R., Sims, N.A., Schnall, R., Della, N.G., Holloway, A.J., Digby, M.R., et al. (2003). Generation and analysis of Siah2 mutant mice. Mol. Cell. Biol. 23, 9150-9161.   DOI   ScienceOn
44 Gore, A.V., Maegawa, A., Cheong, A., Gilligan, P.C., Weinberg, E.S., and Sampath, K. (2005). The zebrafish dorsal axis is apparent at the four-cell stage. Nature 438, 1030-1035.   DOI   ScienceOn
45 Gritsman, K., Zhang, J., Cheng, S., Heckscher, E., Talbot, W.S., and Schier, A.F. (1999). The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121-132.   DOI   ScienceOn
46 House, CM., Frew, I.J., Huang, H.L., Wiche, G., Traficante, N., Nice, E., Catimel, B., and Bowtell, D.D. (2003). A binding motif for Siah ubiquitin ligase. Proc. Natl. Acad. Sci. USA 100, 3101-3106.   DOI   ScienceOn
47 Matsuzawa, S., and Reed, J.C. (2001). Siah-1, SIP, and Ebi collaborate in a novel pathway for b-catenin degradation linked to p53 responses. Mol. Cell 7, 915-926.   DOI   ScienceOn
48 Li, S., Li, Y., Carthew, R.W., and Lai, Z.C. (1997). Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor tramtrack. Cell 90, 469-478.   DOI   ScienceOn