• Title/Summary/Keyword: Droplet-Wall Interaction

Search Result 26, Processing Time 0.024 seconds

Numerical Analysis of the Effect of Injection Pressure Variation on Free Spray and Impaction Spray Characteristics

  • Park, Kweon-Ha;Kim, Byung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.236-250
    • /
    • 2000
  • Compression ignition direct injection diesel engines employed a high pressure injection system have been developed as a measure to improve a fuel efficiency and reduce harmful emissions. In order to understand the effects of the pressure variation, many experimental works have been done, however there are many difficulties to get data in engine condition. This work gives numerical results for the high pressure effects on spray characteristics in wide or limited space with near walls. The gas phase is modelled by Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled using the discrete droplet model approach in Lagrangian form and the drop behavior on a wall is calculated with a new droplet-wall interaction model based on the experiments observing individual drops. The droplet distributions, vapour fractions and gas flows are shown in various injection pressure cases. In free spray case which the injection spray has no wall impaction, the spray dispersion and vapour fraction increase and drop sizes decrease with increasing injection pressure. The same phenomena appears more clearly in wall impaction cases.

  • PDF

Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel (고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF

Numerical Analysis on Interaction between Fire Flame and Water Mist according to the Variation of Nozzle Performance (노즐 특성 변화에 따른 미분무수와 화염과의 상호작용에 관한 수치해석)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2983-2988
    • /
    • 2007
  • In the present study, the numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m$ and a water mist nozzle that be installed 1.8m from fire pool. In the study, the parameters of nozzle for simulation are the droplet size and the spray velocity. Finally, the droplet size influences to fire flume on fire suppression than spray velocity because of the effect of terminal velocity, and the optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20m/s, respectively.

  • PDF

A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect (막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구)

  • Byeon,Do-Yeong;Kim,Man-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.69-76
    • /
    • 2003
  • For stable combustion and safety of a structure of the propulsion system, a cooling system to the liquid rocket engine should be incorporated. In this study, Eulerian-Lagrangian scheme for two phase combustion, nongray radiation and soot formation effect, and film-wall interaction have been introduced to study the effect of film cooling. After briefly introducing the governing equation, combustion characteristics with change of wall temperature has been investigated by varying such parameters as fuel mass fraction for film cooling, diameter of the fuel droplet, overall mixture fraction of oxygen to fuel. Also, radiative heat flux is compared with the conductive one at the combustor wall.

The Effect of Impinging Land Size on Diesel Spray Behavior in OSKA Type Combustion Chamber (OSKA형 연소실에서 충돌면크기변화가 디젤분무거동에 미치는 영향)

  • 임덕경;박권하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.18-26
    • /
    • 2001
  • OSKA engine was developed to remove the dense core of injection sprays. The engine uses impinging spray on a small pip, which spray after impinging is broken into smaller drops and disperses into fee space in chamber. In this paper the pip size is analyzed to give more dispersion of spray and fuel vapor. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form, and the droplet wall interaction is modelled as a function of the velocity normal to impaction lands. The droplet distributions, vapor fractions and gas flows are analyzed for various injection pressure cases. Numerical results indicate that the land diameter of 5.6mm has the best performance of spray dynamics and vaporization in the test sizes.

  • PDF

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

DEVELOPMENT OF A GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX WITH WALL IMPINGEMENT AND HEAT TRANSFER ANALYSIS MODEL OF LIQUID FILM (충돌분무와 액막의 열전달 해석모델을 고려한 범용 열/유체 프로그램 NUFLEX의 개발)

  • Kim, H.J.;Ro, K.C.;Ryou, H.S.;Hur, N.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.68-72
    • /
    • 2008
  • NUFLEX is a general purpose thermo/fluid flow analysis program which has various physical models including spray. In NUFLEX, spray models are composed of breakup and collision models of droplet. However, in case of diesel engine, interaction between wall-film and impingement model considering heat transfer is not coded in NUFLEX. In this study, Lee & Ryou impingement & wall-film model considering heat transfer is applied to NUFLEX. For the verification of this NUFLEX program, numerical results are compared with experimental data. Differences of film thickness and radius between numerical results and experimental data are within 10% error range. The results show that NUFLEX can be used for comprehensive analysis of spray phenomena.

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

Development of a general purpose thermo/fluid flow analysis program NUFLEX with heat transfer analy sis model of impinging liquid film (충돌분무 액막의 열전달 해석모델을 고려한 범용 열/유체 프로그램 NUFLEX의 개발)

  • Kim, Hyun-Jeong;Ro, Kyoung-Chul;Ryou, Hong-Sun;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.71-74
    • /
    • 2008
  • NUFLEX is a general purpose thermo/fluid flow analysis program which has various physical models including spray. In NUFLEX, spray models are composed of breakup and collision models of droplet. However, in case of diesel engine, interaction between wall-film and impingement model considering heat transfer is not coded in NUFLEX. In this study, Lee & Ryou impingement & wall-film model considering heat transfer is applied to NUFLEX. For the verification of this NUFLEX program, numerical results are compared with experimental data. Differences of film thickness and radius between numerical results and experimental data are within 10% error range. The results show that NUFLEX can be used for comprehensive analysis of spray phenomena.

  • PDF

A Study on the Effect of Injection Rate on Emission Characteristics in D.I. Diesel Engine by Multi-zone Model (Multi-zone 모델에 의한 디젤엔진에서의 분사율 변화에 따른 배기가스 특성에 관한 연구)

  • ;;;;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.94-103
    • /
    • 1999
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed . This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. It takes into consideration, on a zonal basis ,detailed of fuel spray formation, droplet evaporation, air-fuel mixing, spray wall interaction, swirl , heat transfer, self ignition and burning rate . The emission model is considered with chemical equipment , as well as the kinetics of fuel. NO and soot reactions in order to calculate the pollutant concentrations within each zone and the whole of cylinder . The accuracy of prediction versus experimental data and the capability of the model in predicting engine heat release, cylinder pressure and all the major exhaust emissions on zonal and cumulative basis., is demonstrated. Detailed prediction results showing the sensitivity of the model bv various injection rates are presented and discussed.

  • PDF