• Title/Summary/Keyword: Droplet transfer phenomena

Search Result 22, Processing Time 0.02 seconds

Effect of S on Spatter Generation and Droplet Transfer Phenomena of MAG Welding (MAG용접의 스패터 발생 및 용적이행현상에 미치는 S의 영향)

  • 안영호;이종봉;최원규
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.486-491
    • /
    • 2001
  • The effect of S content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80%Ar-$20%CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with S content of wire. Sulfur addition in wire reduced surface tension of droplet and weld pool, and made arc more stable in MAG welding. With increasing S content, the spattering ratio and the ratio of large size spatter ($d{\geq}1.0mm$) were reduced in short circuit transfer mode. In spray transfer mode, spattering ratio, however was increased when sulfur was added more than 0.020wt.% because surface tension of droplets and weld pool was reduced too much even though arc stability was improved.

  • PDF

Effect of Si on Spatter Generation and Droplet Transfer Phenomena of MAG Wwlding (MAG 용접의 스패터 발생 및 용적이행현상에 미치는 Si의 영향)

  • 안영호;이종봉;엄동석
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of Si content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80% Ar-20% $CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with Si content of wire. With increasing Si content, the spattering ratio and the ratio of large size spatter $(d\geq1.0mm)$ were increased. The increase of Si content in molten metal made surface tension increase due to reduction of oxygen content, which resulted from deoxidizing action of silicon. The increase of surface tension resulted in unstable transfer phenomena and arc instability in both short circuit and spray region. With changing Si content of wire, spattering characteristics and droplet transfer phenomena was directly influenced by the variation of surface tension, compared with the effect of arc stability.

  • PDF

Effect of Ca on Droplet Transfer Phenomena in GMA Welding (GMAW 용적이행 현상에 미치는 Ca의 영향)

  • 안영호;방국수;이종봉;장내웅
    • Journal of Welding and Joining
    • /
    • v.12 no.4
    • /
    • pp.76-84
    • /
    • 1994
  • Droplet transfer modes due to welding conditions and the effect of Ca in welding wire on droplet transfer were investigated. Droplet transfer mode in CO$_{2}$ welding was classified into 2 modes, that is, short circuit and globular transfer, with increasing welding current and voltage. With increasing Ca content in wire, repulsive pressure due to vaporization of Ca was considerably increased. In short circuit transfer region, arcing time was increased and droplet transfer cycle was decreased, with increasing Ca content. In globular transfer region, welding condition for globular transfer was lower current region, with increasing Ca content.

  • PDF

Direct-contact heat transfer of single droplets in dispersed flow film boiling: Experiment and model assessment

  • Park, Junseok;Kim, Hyungdae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2464-2476
    • /
    • 2021
  • Direct-contact heat transfer of a single saturated droplet upon colliding with a heated wall in the regime of film boiling was experimentally investigated using high-resolution infrared thermometry technique. This technique provides transient local wall heat flux distributions during the entire collision period. In addition, various physical parameters relevant to the mechanistic modelling of these phenomena can be measured. The obtained results show that when single droplets dynamically collide with a heated surface during film boiling above the Leidenfrost point temperature, typically determined by droplet collision dynamics without considering thermal interactions, small spots of high heat flux due to localized wetting during the collision appear as increasing Wen. A systematic comparison revealed that existing theoretical models do not consider these observed physical phenomena and have lacks in accurately predicting the amount of direct-contact heat transfer. The necessity of developing an improved model to account for the effects of local wetting during the direct-contact heat transfer process is emphasized.

Effect of Ti on Spatter Generation of $CO_2$Welding ($CO_2$용접시 Spatter발생에 미치는 Ti의 영향)

  • 안영호;이종봉;방국수;엄동석
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.106-112
    • /
    • 1996
  • The effects of Ti addition in welding wire on the spatter generation and the droplet transfer phenomena were investigated. With increasing Ti content the spattering rate was decreased but the ratio of large size spatter (D $\geq$ 1. 0mm) was increased in both short circuit and globular transfer mode of $CO_2$welding. In short circuit transfer region, the arcing time was increased and the droplet transfer frequency was decreased with increasing Ti content In globular transfer region, the transition current and voltage to globular transfer was lowered and the welding condition region for stable globular transfer was widened with increasing Ti content.

  • PDF

An Experimental Study of Breakup of Impinging Droplets on a Hot Surface (표면 충돌 액적의 분열에 관한 실험적 연구)

  • Ko, Y.S.;Chung, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.85-92
    • /
    • 1994
  • Characteristics of breakup of a liquid droplet impinging on a hot surface has been investigated experimentally by using decane fuel. Factors influencing droplet breakup are surface temperature, impinging velocity, droplet diameter and incident angle. Droplets impinging on a hot surface begins to breakup at $220{\sim}235^{\circ}C$. This temperature varies with impinging Velocity, droplet diameter and incident angle. For wall temperature of $220{\sim}245^{\circ}C$ and above $270^{\circ}C$, breakup probability increases as impinging velocity increases showing S shape curve. For $245{\sim}265^{\circ}C$, a local minimum heat transfer rate occurs. In this temperature range, breakup probability shows nonmonotonous behavior as functions of impinging velocity. As droplet diameter decreases, impinging velocity required for droplet breakup increases. An optimum impinging angle for droplet breakup exists which are found to be about $75^{\circ}$.

  • PDF

A Study on Modeling of Short-Circuliting Phenomena and Selection of Current Waveform for Reduction of Spatter in GMAW (가스 메탈 아크 용접에서 단락현상 모델링 및 스패터 감소를 위한 전류파형 선정에 관한 연구)

  • 황주호;문형순;나석주;한광수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.57-67
    • /
    • 1996
  • With an expansion in automation of welding processes, emphasis has been shifted from other welding processes to the GMA welding. However, there is a problem with this process that the spatter occurs very frequently. In GMA welding, there are several types in the way of metal transfer from the electrode wire to the weld pool, which have a close relatonship with the spatter genetration. This study was concerned with the spatter occurring in the short-circuiting transfer. In welding with short-circuiting, the electromagnetic force formed by the welding current facilitatics the rupture of the metal bridge between the wire and workpiece and ensures the normal process of the welding process. However, the spatter can be genetrated from the droplet because of the upward magnetic force, when the droplet contacts with the weld pool. The passage of current through the bridge results in the accumulation of the thermal energy, which causes the bridge to explode in the final stage of short-circuiting, thus forming the spatter. Based on the above phenomena in conjunction with other experimental results published, the physical phenomenon related with the occurrence of spatter was modeled and the current waveform was investigated to reduce the spatter. Finally, the fuzzy rule based method was proposed to predict the time of short-circuiting and arcing in the metal transfer.

  • PDF