• Title/Summary/Keyword: Droplet mean diameter

Search Result 163, Processing Time 0.034 seconds

A Study on the Correlation of Droplets Size and Velocity of the Pintle Type Gasoline Injector with Intermittent Injection (간헐적으로 분사되는 핀틀형 가솔린 분사기의 액적크기와 속도 상관관계에 관한 연구)

  • Kang, S.J.;Kim, W.T.
    • Journal of ILASS-Korea
    • /
    • v.3 no.1
    • /
    • pp.34-42
    • /
    • 1998
  • The correlation between the droplets size and the velocity are investigated for an intermittent spray of the pintle type fuel injector employed in a port injection gasoline engine. The analysis such as the mean droplet size, SMD, and velocity under the fixed injection period and varied fuel pressures are conducted utilizing PDPA systems. As results, the experimental data obtained, show that the larger droplet sizes. the higher velocities during the spray tip arrival time, and that at Z=70mm, r=8mm, both droplet sizes and velocities are peak. At the upstream, flow of droplets are dominated by injection pressure, which are more effected inertia force of droplets at the downstream of Z=70mm.

  • PDF

Spray characteristics and nozzle design experiment to twin-fluid atomizer (이유체 분무기의 분무특성 및 노즐설계 실험)

  • Jeong, Jin-Do;Ji, Pyeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1941-1947
    • /
    • 1996
  • Droplet size measurement technique was established for the sprayed viscous fluid by virtue of the installation of the sprayed-droplet size measurement system employing light scattering method. Atomization test results showed that the mean droplet size of the sprayed viscous fluid is decreased with the increase of the mass ratio of air to fuel and in case of the same air/fuel ratio, also with the increase of viscous fluid flow rate, and is increased with the distance from atomizer tip. Basic design data for the manufacture of external-mixing type, Y-Jet type, and internal-mixing type atomizers was acquired from the atomization tests.

Relationships between Airborne Droplet and Impression Diameters in Small Droplets (작은 분무입자(噴霧粒子)에 있어서 원형분무입자(原形噴霧粒子) 직경(直徑)과 살포(撒布)된 입자직경(粒子直徑)의 관계(關係))

  • Lee, Sang-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.192-197
    • /
    • 1979
  • Spread factors were tried to determine the diameter of airborne droplet emitted: from the sprayer by the measurements of airborne droplet diameter emitted from the uniform size droplet producer and impression diameter on Kromekote card or Eucalypt's leaf in the different dilute concentration with Geigy Red Herbicide Dye from 0.5% to 2% by weight. The results abtained were as follows; The general form of the equation in the relationship between airborne droplet and impression diameter on Kromekote card or Eucalypt's leaf was an exponential equation as follows; $$Y=aX^b$$ which gave a linear relation on log-log graph paper. The spread factor seemed to be larger in the thin dilute concentration than in the thick dilute concentration. The spread factor was remarkably smaller on Eucalypt's leaf than on Kromekote card due to the penetration of liquid into the leaf and the stomata of the epidermis. The calculated equation of the mean depth of the droplet sprayed on Eucalypt's leaf was the same form as $Y=aX^b$, which implied that the spray liquid was distributed in surplus in accordance with the diameter of the droplet larger than the optimum size droplet to control insect and disease.

  • PDF

A Study on the Characteristics of Fuel Spray (燃料噴霧特性 에 관한 硏究)

  • 진호근;이창식;서정일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.256-260
    • /
    • 1982
  • This paper presents the characteristics of fuel spray in a diesel engine. In this paper, in order to obtain spray droplet size in a diesel engine, water was injected into the cylinder at room temperature and pressure by injection system. Spray droplet size was measured by liquid immersion technique with a lubricant used as an immersion liquid for spray water from injection nozzle. In this experiment, single hole type throttle nozzle are used at same operating conditions, which included opening pressure of nozzle, fuel delivery, and injection speed. Sauter mean diameter decrease with the increase of injection pressure and decrease in injection nozzle diameter. The rate of spray penetration increased with increasing injection pressure and diameter of injection nozzle at the constant spray conditions.

A Study on Visualization of Fine Dust Captured by FOG Droplet (미세액적에 의한 미세먼지 포집 가시화 연구)

  • Oh, Jinho;Kim, Hyun Dong;Lee, Jung-Eon;Yang, Jun Hwan;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.39-45
    • /
    • 2021
  • An experiment to visualize fine dust captured by FOG droplet is conducted. Coal dust with 23.56 MMD (Mean Median Diameter) and water with 17.02 MMD is used as fine dust and FOG droplet. Long distance microscope and high-speed camera are used to capture the images of micro-scale particles sprinkled by acrylic duct. After measuring and comparing the size of the coal dust and FOG droplet to MMD, process to seize the coal dust with FOG droplet is recorded in 2 conditions: Fixed and Floated coal dust in the floated FOG droplet flow. In both conditions, a coal dust particle is collided and captured by a FOG droplet particle. A FOG droplet particle attached at the surface of the coal dust particle does not break and remains spherical shape due to surface tension. Combined particles are rotated by momentum of the particle and fallen.

Analysis of Correclations between Flow Rate, Pressure and Average Size of Droplet with Hydraulic Diameter of Water Curtain Nozzle (수막설비용 노즐의 수력직경 변화에 따른 방사유량, 방사압 그리고 액적의 평균 크기 상관관계 분석)

  • Park, Jung Wook;Shin, Yeon Je;You, Woo Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.317-323
    • /
    • 2020
  • In this study, the correlations between flow rate, exhaust pressure, and droplet mean diameter with the shape factor of a water curtain nozzle were investigated. To analyze the flow coefficient and the distribution constant on the effects of the hydraulic diameter, five nozzles (D5W3, D5W6, D5W8, D4W6, and D7W6) were mocked up with a consideration of the internal diameter and width. The results showed that the flow coefficient increased in proportion to the constant 0.79 and 62.8 of the hydraulic diameters according to the diameter. As the nozzle width increased, the average droplet size decreased to the -0.235 exponential of the pressure. The average volume was reduced, in which the size distribution of the volume indeterminate decreased with increasing pressure for the same nozzle of the water-curtain. The distribution constants of droplet increased in proportion to the 0.258 exponential of the hydraulic diameter and 244.21. These results are expected to be useful to the design of pressure, flow meter, and average droplet size from a water curtain nozzle to predict the flow characteristics.

Impinging Atomization of Intermittent Gasoline Sprays (간헐 가솔린 분무의 충돌에 의한 미립화 촉진)

  • 원영호;임치락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.174-181
    • /
    • 1998
  • Experimental and analytical studies are presented to characterize the break-up mechanism and atomization processes of the intermittent- impinging-type nozzle. Gasoline jets passing through the circular nozzle with the outlet diameter of 0.4mm and the injection duration of 10ms are impinged on each other. The impingement of fuel jets forms a thin liquid sheet, and the break-up of the liquid sheet produces liquid ligaments and droplets subsequently. The shape of liquid sheets was visualized at various impinging velocities and angles using the planer laser induced fluorescence (PLIF) technique. Based on the Kelvin-Helmholtz wave instability theory, the break-up length of liquid sheets and the droplet diameter are obtained by the theoretical analysis of the sheet disintegration. The mean diameter of droplet is also estimated analytically using the liquid sheet thickness at the edge and the wavelength of the fastest growing wave. The present results indicate that the theoretical results are favorably agreed with the experimental results. The size of droplets decreases after the impingement as the impinging angle or the injection pressure increase. The increment of the injection pressure is more effective than the increment of the impinging angle to reduce the size of droplets.

  • PDF

Effect of Storage Temperature on the Dispersion Stability of O/W Nano-emulsions (O/W 나노에멀젼 분산안정성에 미치는 보관온도의 영향)

  • Lee, Ye-Eun;Yoo, In-Sang
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.385-391
    • /
    • 2014
  • In this study, the emulsion dispersion stability of optimizing storage temperature was investigated. The system was based on oil/water (O/W) emulsions. In order to evaluate the stability, mean diameter of droplet was measured as a function of temperature with various mixed hydrophilic lipophilic balance (HLB). In addition, the correlations between phase inversion temperature (PIT) and the optimum storage temperature were probed. In this system, majority of the smallest droplet was shown at temperature of $20^{\circ}C$ below PIT. Whether the temperature was increased or decreased from the optimum, size of the droplet increased. According to the mixed HLB, the particle size and optimum storage temperature were also affected. As the concentrations of surfactant were increased, the size of particle decreased with lower optimum temperature for storage. If the surfactant (4 wt%) were mixed with HLB, the optimum storage temperature was $21^{\circ}C$ for maintaining the size of smallest droplet at 108.3 nm in diameter. At above optimum condition, increased size of particle was observed approximately 4 % increases from 108.2 nm to 112.3 nm after 600 hours. The size of particle in emulsion was maintained stably without any considerable effect of Ostwald ripening phenomena at the optimum storage temperature with low polydispersity index.

Droplet Sizes and Velocities from Single-Hole Nozzle in Transversing Subsonic Air-stream (아음속 횡단류에 수직 분사되는 분무의 액적크기 및 속도 분포 특성)

  • Lee, In-Chul;Cho, Woo-Jin;Lee, Bong-Su;Kim, Jong-Hyun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.106-109
    • /
    • 2007
  • The spray plume characteristics of liquid water jet injected into subsonic cross-flow at 42 m/s were experimentally investigated. Nozzle has a 1.0 m diameter and L/D=5. Droplet sizes, velocities, volume flux were measured at each downstream area of the injector exit using phase Doppler particle anemometry. Measuring probe position is moved with 3-way transversing machine. Experimental results indicate that SMD is varied from 75 to $120{\mu}m$ distribution and it is uncertain layer structure. SMD peaks at the top of the spray plume. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/D : 40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume. Volume flux is a criterion to the droplet concentration. All volume flux distribution has a same structure that continuously decreases from the center region to the edge of the plume. Z/D : 20 is spatially less concentrated than in Z/D : 100.

  • PDF

A Study on Droplet Distribution of Bio Diesel Fuels Using Immersion Sampling Method (액침법에 의한 바이오디젤유의 액적분포에 관한 연구)

  • Kim, M.S.;Doh, H.C.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.5-10
    • /
    • 2006
  • The purpose of this study is to measure the droplet distribution and Sauter mean diameter(SMD) of biodiesel fuel, using the immersion sampling method. This method involves using an optical microscope and a CCD camera, to take an image of the droplets. These images are then measured by using a 'Sigma Scan' processing program. The results of the above experiment are summarized as followed ; (1) There can be as much as a 10% error rate when measuring the diameter of these droplets, using the image processing method and the naked eye. (2) The result of droplet size distribution test, TVO(transesterified vegetable oil) big size droplet distribution were increased at ambient pressure $6kg/cm^2$. (3) When ambient pressure increased $6kg/cm^2$ above, SMD variation of TVO and UVO(used vegetable oil) 30 are small. (4) On Rosin-Rammler analysis, droplets size distribution of UVO(used vegetable oil) 30 uniform more than TVO 20 on ambient pressure $1kg/cm^2$.

  • PDF