• Title/Summary/Keyword: Droplet dynamics

Search Result 99, Processing Time 0.021 seconds

Numerical Study of a Droplet Movement for the Ocean $CO_2$ Sequestration ($CO_2$해양처리를 위한 액적 거동 시뮬레이션 기초연구)

  • Jung Rho-Taek;Kang Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • In the situation which Russia's ratification of the Kyoto protocol at February,2004, ANNEX I nations must reduce GHG(Green House Gas) discharge rate from 2008 by 2012 to the reduction level at 1990. We introduce the CO₂ ocean sequestration that is one of promising method for getting the stable CO₂ concentration in the atmosphere. There are four categories : ocean transportation technique, ocean initial dissolution technique, ocean deep current evaluation technique, and ocean biological evaluation technique. In this paper, we carried out the fundamental numerical study on the ocean initial dissolution technique, when the Liquidized CO₂ is emitted at the deep ocean, It is very important to the dissolution rate of movable CO₂ interface because it Is directly impact to the ocean organism. In order to investigate the relation of the interface movement and rate of the dissolution, we develope CR(Computational Fluid Dynamics) code that was constructed by the finite volume method based on the unstructured mesh, and a droplet's boundary surface can move and one direction dissolution from disperse phase into continuous phase adopted as its physics be. This study clarifies hydrodynamic relation between solubility and movement of the droplet through the verification of the Cm code.

  • PDF

CFD APLICATIONS FOR THE $CO_2$ OCEAN SEQUESTRATION ($CO_2$ 해양격리를 위한 CFD의 응용연구)

  • Jung, R.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.196-201
    • /
    • 2009
  • Global warming issues due to the $CO_2$(Carbon Dioxide) become increasing since the Industrial Revolution. After the Kyoto protocol at 1997, nations which have the prearranged quota drives their national project for the reduction of $CO_2$. Korean Government start to the related big projects in the view of three concepts which have consist of the $CO_2$ exhaust reduction on land, $CO_2$ capture and $CO_2$ storage. Furthermore, the storage method putting into depleted region underground is accepted by the London Convention while the ocean diluted method discharging the liquid $CO_2$ into the deep ocean using the long pipe which is towed by the surface vessel is underway for the research steps which means that there are many potentials for the R&Ds that need for the breakthrough. In this paper, the role and example of the Computational Fluid Dynamics for the feasibility study of the $CO_2$ ocean sequestration is mentioned.

  • PDF

Characteristic of Liquid Jet in Subsonic Cross-flow (횡단가스 유동에 분사되는 액체제트의 분무특성)

  • Ko, Jung-Bin;Lee, Kwan-Hyung;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • The present study has numerically and experimentally investigated the spray behavior of liquid jet injected in subsonic cross-flow. The corresponding spray characteristics are correlated with jet operating parameters. The spray dynamics are known to be distinctly different in the three regimes: the column, the ligament and the droplet regimes. The behaviors of column, penetration and breakup of liquid jet have been studied. Numerical and physical models are base on a modified KIVA code. The primary atomization is represented by a wave model base on the KH(Kelvin-Helmholtz) instability that is generated by a high interface relative velocity between the liquid and gas flows. In odor to capture the spray trajectory, CCD camera has been utilized. Numerical and experimental results indicate that the breakup point is delayed by increasing gas momentum ratio and the penetration decreases by increasing Weber number.

  • PDF

Combustion and Emission Characteristics of Diesel Spray in High-Pressure Environment (고압상태에서의 디젤연료분무의 연소 및 매연가스배출 특성)

  • Kwon, Y.D.;Kim, Y.M.;Kim, S.W.;Park, S.B.
    • Journal of ILASS-Korea
    • /
    • v.2 no.1
    • /
    • pp.18-28
    • /
    • 1997
  • The present study is mainly aiming at numerically analyzing the combustion and emission characteristics of the diesel spray in a high-pressure environment. Computations are peformed for the peak chamber pressure with range from 4.08 MPa to 162 MPa. Numerical results indicate that the pressure increase in combustion chamber significantly influences the mechanism for droplet dynamics and mixing characteristics, spray penetration autoignition, flame lift-on height and the propagation or fuel vapor and flame. By increasing the ratio or the ambient density to injected liquid density, the fuel-air mixing rates and the burning rates increase and the $NO_x/soot$ emission level decreases.

  • PDF

Analysis of Spray Characteristics in w-shaped Diesel Engine Combustion Chamber with Impingement Lands (충돌부를 갖는 w-형 디젤엔진 연소실의 분무특성분석)

  • Park, K.;Park, D.S.;Kim, M.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.4
    • /
    • pp.40-45
    • /
    • 1996
  • This Paper addresses to spray characteristics in w-shaped diesel engine combustion chamber which has impingement parts for 4 sprays injected from an injector. The two-dimensional shapes have been chosen to avoid the difficulties for analysing the spray dynamics in the real chamber. The simple shapes are reproduced with same geometries in vertical or horizontal sections through the impingement lands. The spray developments are visualized with a high speed drum camera and shadowgraphy optical system, and the droplet sizes are measured by Malvern system. The detailed discussions m made for the two different combustion chamber shapes, which are new w-shape using spray wall impaction and general w-shape. The results show that the spray characteristics of the new shape are superior to those of the general w-shape.

  • PDF

Instability of Electrically Driven Polymer Liquid Jets

  • Lee Min-Hyung;Kang Seung-Baik;Park Joo-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.409-417
    • /
    • 2006
  • Polymer nanofibers can be generated by a electrospinning process. The process involves electrically charged jet of polymer solutions evolving from a droplet. The jet stretches in vertical direction due to the difference between charged particle and constant current located at the collector, while the Coulomb and viscoelastic forces start to contribute to radial and azimuthal (torsional) stretching. In this paper, the unstable dynamics of the liquid polymer jet is examined experimentally and theoretically. A complex viscoelastic rheological model has been adopted to analyze the behavior of a charged liquid jet. The model includes complex phenomena of stress relaxation of the liquid jet resulting from the competing force components. The experimental data of the jet paths captured by high-speed videocamera also confirm the similar behavior with the predictions.

A Study on the Kinematic Characteristics of the Ocean High Elevation Fountain (해상용 고사분수의 운동학적 특성 연구)

  • Lee, Choon-Tae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.85-90
    • /
    • 2011
  • Recently, many high elevation fountain are constructed for the beauty of beach landscape. Typically, a fountain has several nozzles that shoots water upwards or at an angle into the air. But unfortunately, the weather and wind can cause the water soak nearby walkways and pedestrians. Therefore, in this study, a mathematical model of high elevation fountain is suggested to predict the actual travelling distance of water droplet by the wind. To simplify our treatment of the water flow and to avoid issues such as fluid dynamics and surface tension, we have adopted a particle model for the fountain water. The particles are assumed not to interact with each other, and do not deform during their flight through air.

Determining Factors to Enhanced Oil Mist Filter Efficiency Using CFD Modeling (CFD모델링을 통한 오일 미스트필터효율 향상 결정요소에 관한 연구)

  • Shin, Hee-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.119-127
    • /
    • 2021
  • Small drops in gas cause some problems for downstream equipments such as turbine, compressor and etc. In some cases, we are obliged to remove hazardous liquid mist from gas. In order to remove water or other liquids from the gas, there are some equipments like mesh mist eliminator and vane-plate mist eliminator. oil mist filter is a kind of liquid eliminator equipments used to remove the liquid with 1-10um droplet diameter from the gas. In this paper is determine the factors affecting the oil mist filter efficiency using CFD. length and angle of the filter were considered and the results and compare the results of the efficiency tests, showed error of less than 3%. optimum filter can remove more than 87.3% between 1 and 10um of oil mist.

Numerical Study for the Influence of Environment Temperature on Offshore Arctic Pipeline and Impingement Erosion Analysis by using Thermal Flow Simulation (극지 해양 파이프라인 내부 유체의 온도별 영향 및 내부 충돌침식 분석)

  • Jo, Chul Hee;Lee, Jun-Ho;Jang, Choon-Man;Heang, Su-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2015
  • This paper describes thermal flow characteristic in various pipelines: straight pipeline and curved pipeline. In the Arctic and ocean area, pipelines are exposed to a extremely low temperature ($0{\sim}-40^{\circ}C$). In this situation, three-dimensional flow analysis should be analyzed to investigate thermal effects such as pressure drop, temperature change, velocity deficit and distribution change of liquid droplet of internal fluid. Also, due to freezing of water droplet, impingement erosion is expected in the curved pipeline. The stability of the pipelines can be influenced by impingement erosion. In this paper, multi-phase and multi-species analysis was introduced to analyze the flow characteristics and impingement erosion of Arctic and ocean pipelines.

A Study on the Non-evaporating Diesel Spray Characteristics as a Function of Ambient Pressure in Constant Volume Combustion Chamber (정적챔버에서 분위기 압력에 따른 비증발 디젤분무특성 연구)

  • Jeon, Chung-Hwan;Jeong, Jeong-Hoon;Kim, Hyun-Kyu;Song, Ju-Hun;Chang, Young-June
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.645-652
    • /
    • 2010
  • The aim of this investigation was study on the non-evaporation diesel spray characteristics injected through a common-rail diesel injector under various ambient pressure. The diesel spray was investigated with observation of macroscopic characteristics such as spray tip penetration and spray cone angle by the shadowgraph and the image processing method. The numerical study was conducted using a computational fluid dynamics code, AVL-FIRE. The breakup models used were WAVE model and standard $k-{\varepsilon}$ turbulence model was applied. The numerical study used input data which spray cone angle and fuel injection rate was achieved by Zeuch's method. Comparison with experimental result such as spray tip penetration was good agreement. Distribution of droplet diameter were conducted on four planes where the axial distances were 5, 15, 39 and 49mm respectively downstream from the orifice exit.