• Title/Summary/Keyword: Droplet Velocity

Search Result 347, Processing Time 0.028 seconds

An experimental study on swirling spray flame structure by air-blast nozzle (기류분사 노즐에 의한 선회 분무 화염의 구조에 관한 실험적 연구)

  • O, Sang-Heon;Baek, Min-Su;Kim, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.473-485
    • /
    • 1997
  • Detailed experimental study has been made of air blast kerosene spray flames with and without swirl in combustion air flow. Phase-Doppler detect technique is used to measure Sauter mean diameter, axial component mean and rms velocity, size-velocity correlation, and number density. These measurements are obtained for both nonreacting and reacting cases under several stable flame conditions. The results show that the introduction of swirl to the combustion air modifies the spatial distribution of droplet size, velocity, and number density, and thus alters the flame structure. However, due to the weak swirl intensity, the overall structure of swirling flames are essentially same as that of nonswirling flames. Physical model of structure of air blast atomized spray flames is projected to show that spray flames are composed of three distinct regions: the two-phase mixture region, the main reaction and the intermittent combustion region. Near the atomizer, two phase mixture of droplet and air is formed in the core region. This dense spray region is characterized by high droplet number density and the strong convective effect. There follows the main combustion region where the main flame penetrates within the spray boundary. Main reaction region of these flames are governed by internal group combustion mode. Finally there exists the intermittent combustion region where local group burning or isolated droplet burning occurs.

Driving Per Nozzle By Various Waveform Depending On Resonance Frequency In Piezoelectric Inkjet Head (잉크젯 헤드의 공진주파수에 따른 구동파형을 이용한 개별노즐 제어)

  • Kim, Y.J.;Park, C.S.;Sim, W.C.;Kang, P.J.;Yoo, Y.S.;Park, J.H.;Joung, J.W.;Oh, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1542-1543
    • /
    • 2007
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristics were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Using the water based ink of viscosity of 11.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets through 64 nozzles average velocity of 4.05 m/s with standard deviation of 0.06 m/s and average diameter of $29.2\;{\mu}m$ with standard variation of $0.5\;{\mu}m$.

  • PDF

The Effect of Cross-flow on Liquid Atomization (횡단유동이 액체 미립화에 미치는 영향)

  • Kim, Jong-Hyun;Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.87-92
    • /
    • 2008
  • The breakup processes and spray plume characteristics of liquid jets injected in subsonic air cross-flows were experimentally studied. The behaviors of column, penetration, breakup of plain liquid jet and droplet sizes, velocities have been studied in non-swirling cross-flow of air. Nozzle has a 1.0 mm diameter and Lid ratio=5. Experimental results indicate that the breakup point is delayed by increasing air momentum, the penetration decreases by increasing Weber number and the split angle is increased by increasing air velocity or decreasing injection velocity. SMD increases according as increasing height or decreases in accordance with increasing air velocity. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/d=40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume.

The Gasoline Atomization Characteristics and Static Pressure Distribution of Tapered Nozzle Swirl Spray (경사노즐 선회분사기의 가솔린 미립화 및 분무 내부 압력 분포)

  • Moon, Seok-Su;Choi, Jae-Joon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.283-291
    • /
    • 2007
  • The static pressure distribution, atomization characteristics and velocity distribution of tapered nozzle swirl spray is analyzed and then compared with original swirl spray. The static pressure distribution inside the swirl spray is measured using a piezoresistive pressure transducer. Phase Doppler anemometry (PDA) is applied to measure and analyze the droplet size and velocity distribution of tapered nozzle and original swirl spray. The static pressure inside the spray shows the lower value compared to the atmospheric pressure and this pressure drop is getting attenuated as the taper angle is increased. The droplet size of tapered nozzle spray shows similar value compared to the original swirl spray at the horizontal mainstream while it shows increased value at vertical mainstream. The deteriorated atomization characteristics of tapered nozzle spray is improved by applying high fuel temperature injection without causing the spray collapse. The velocity results show that the larger portion of fuel is positioned with higher injection velocity, and the smaller portion of fuel is positioned with lower injection velocity with causing spatially non-uniform mixture distribution.

Spray Behaviors and Characteristics of Droplet Distribution in GDI injector (GDI 엔진 인젝터의 연료 분무 거동 및 액적 분포 특성)

  • Kim, M.K.;Lee, C.S.;Lee, K.H.;Jin, D.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.16-21
    • /
    • 2001
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline swirl injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplets were measured by the phase Doppler particle analyzer system. The macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 7 and 10 MPa of injection pressure under different spray cone angle. The results of this work show that the geometry of injector was more dominant over the macroscopic characteristics of spray than the fuel injection pressure and injection duration. As for the atomization characteristics, the increase of injection pressure resulted in the decrease of fuel droplet diameter and the atomization characteristics differed as to the spray cone angle. The most droplets had under $25{\mu}m$ diameter and for the large droplets(upper $40{\mu}m$) as the spray grew the atomization presses were very slow. Comparison results between the measured droplet distribution and the droplet distribution functions revealed that the measured droplet distribution is very closed to the Normal distribution function and Nukiyama-Tanasawa's function.

  • PDF

Investigation of Internal Flow Fields of Evaporating of Binary Mixture Droplets (증발하는 이성분혼합물 액적의 유동장 해석)

  • Kim, Hyoungsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.21-25
    • /
    • 2017
  • If a liquid droplet evaporates on a solid substrate, when it completely dries, it leaves a peculiar pattern, which depends on the composition of the liquid. Not only a single component liquid but also complex liquids are studied for a different purpose. In particular, a binary mixture droplet has been widely studied and used for an ink-jet printing technology. In this study, we focus on investigating to visualize the internal flow field of an ethanol-water mixture by varying a concentration ratio between two liquids. We measure the in-plane velocity vector fields and vorticities. We believe that this fundamental study about the internal flow field provides a basic idea to understand the dried pattern of the binary mixture droplet.

The Effects of Injector Nozzle Geometry and Operating Pressure Conditions on the Transient Fuel Spray Behavior

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.617-625
    • /
    • 2003
  • Effects of Injector nozzle geometry and operating pressure conditions such as opening pressure, ambient pressure. and injection pressure on the transient fuel spray behavior have been examined by experiments. In order to clarify the effect of internal flow inside nozzle on the external spray, flow details Inside model nozzle and real nozzle were alto investigated both experimentally and numerically. for the effect of injection pressures, droplet sizes and velocities were obtained at maximum line pressure of 21 MPa and 105 MPa. Droplet sizes produced from the round inlet nozzle were larger than those from the sharp inlet nozzle and the spray angle of the round inlet nozzle was narrower than that from the sharp inlet nozzle. With the increase of opening pressure, spray tip penetration and spray angle were increased at both lower ambient pressure and higher ambient pressure. The velocity and size profiles maintained similarity despite of the substantial change in injection pressure, however, the increased injection pressure produced a higher percentage of droplet that are likely to breakup.

ANALYSIS OF TRANSIENT TEMPERATURE DISTRIBUTION IN ROTATING ARC GMA ELDING BY CONSIDERING DROPLET DEFLECTION

  • Kim, Cheolhee;Na, Suck-Joo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.763-768
    • /
    • 2002
  • This paper presents a mathematical model predicting the temperature distribution in rotating GMA welding. The bead width increases with rotation frequency at the same rotation diameter because the molten droplets are deflected by centrifugal force. The numerical solution is obtained by solving the transient three-dimensional heat conduction equation considering the heat input from the welding arc, cathode heating and molten droplets. Generally in GMA welding the heat input may be assumed as a normally distributed source, but the droplet deflection causes some changes in the heat input distribution. To estimate the heat flux distribution due to the molten droplet, the contact point where the droplet is transferred on the weld pool surface is calculated from the flight trajectory of the droplets under the arc plasma velocity field obtained from the arc plasma analysis. The numerical analysis shows a tendency of broadened bead width and shallow penetration depth with the increase of rotating frequency. The simulation results are in good agreement with those obtained by the experiments under various welding conditions.

  • PDF

Dynamic Characteristics of Droplet Impinging on Multi-layer Texture Surfaces (이중으로 텍스쳐 된 표면에 충돌하는 액적의 동적 특성)

  • Moon, Joo Hyun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2016
  • This study presents the dynamic characteristics of an impinging droplet on hydrophobic and hydrophilic surfaces with various texture area fractions. The flat surface was fabricated by using the drilling technique to make micro-meter hole-patterned surfaces, which shows hydrophobic textured surfaces. Moreover, the hydrophilic textured surfaces were manufactured by anodizing technique on the micro-meter hole-patterned surfaces to generate multi-layer surfaces. Impinging droplet experiments were conducted for various hole-patterned surfaces, with changing impact velocity and texture area fractions. It is observed that an anodizing technique increases wettability by decrease in hole diameter on the textured surfaces. However, micro-drilled surfaces decreases wettability because the hole diameter was so large that air can be trapped under the holes. In addition, the maximum spreading diameter decreases with the texture area fraction for the micro-drilled surfaces because of decrease in wettability.

Atomizing Mechanism for a Mist Blower (동력살분무기의 무화기구에 관한 연구)

  • 이상우
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 1996
  • Droplet sizes produced from a mist blower should be adequate to get highly biological effects with a reasonable level of work performance. However the droplet sizes from the conventional nozzles of the mist blower were around VMD 95 to 469$\mu$ which were relatively large as compared with the recommended droplet sizes in liquid flow rate of 17.2 m$/ell$s with air flow rate of 16660$m^3$/s on the maximum travel distance of about 4.0 m. The velocity of air stream at the point where two fluids, air and liquid, impact each other, was tried to maximize as much as possible in order to enhance the atomization performance of a newly designed twin fluid nozzles with the same or better level of performance of the conventional mist blower, The configuration of nozzle orifice should be designed to enlarge the contact area between air and liquid to enhance the atomization.

  • PDF