• Title/Summary/Keyword: Droplet Velocity

Search Result 347, Processing Time 0.033 seconds

Droplet Sizes and Velocities from Single-Hole Nozzle in Transversing Subsonic Air-stream (아음속 횡단류에 수직 분사되는 분무의 액적크기 및 속도 분포 특성)

  • Lee, In-Chul;Cho, Woo-Jin;Lee, Bong-Su;Kim, Jong-Hyun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.106-109
    • /
    • 2007
  • The spray plume characteristics of liquid water jet injected into subsonic cross-flow at 42 m/s were experimentally investigated. Nozzle has a 1.0 m diameter and L/D=5. Droplet sizes, velocities, volume flux were measured at each downstream area of the injector exit using phase Doppler particle anemometry. Measuring probe position is moved with 3-way transversing machine. Experimental results indicate that SMD is varied from 75 to $120{\mu}m$ distribution and it is uncertain layer structure. SMD peaks at the top of the spray plume. This phenomenon is related to the momentum exchange between column waves and cross-flow stream. Droplet vector velocities were varied from 11.5 to 33 m/s. A higher-velocity region can be identified in down edge region at Z/D : 40, 70 and 100. Lower-velocity region were observed on bottom position of the spray plume. Volume flux is a criterion to the droplet concentration. All volume flux distribution has a same structure that continuously decreases from the center region to the edge of the plume. Z/D : 20 is spatially less concentrated than in Z/D : 100.

  • PDF

LINEAR INSTABILITY ANALYSIS OF A WATER SHEET TRAILING FROM A WET SPACER GRID IN A ROD BUNDLE

  • Kang, Han-Ok;Cheung, Fan-Bill
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.895-910
    • /
    • 2013
  • The reflood test data from the rod bundle heat transfer (RBHT) test facility showed that the grids in the upper portion of the rod bundle could become wet well before the arrival of the quench front and that the sizes of liquid droplets downstream of a wet grid could not be predicted by the droplet breakup models for a dry grid. To investigate the water droplet generation from a wet grid spacer, a viscous linear temporal instability model of the water sheet issuing from the trailing edge of the grid with the surrounding steam up-flow is developed in this study. The Orr-Sommerfeld equations along with appropriate boundary conditions for the flow are solved using Chebyshev series expansions and the Tau-Galerkin projection method. The effects of several physical parameters on the water sheet oscillation are studied by determining the variation of the temporal growth rate with the wavenumber. It is found that a larger relative steam velocity to water velocity has a tendency to destabilize the water sheet with increased dynamic pressure. On the other hand, a larger ratio of steam boundary layer to the half water sheet thickness has a stabilizing effect on the water sheet oscillation. Droplet diameters downstream of the spacer grid predicted by the present model are found to compare reasonably well with the data obtained at the RBHT test facility as well as with other data recently reported in the literature.

A Numerical Study on Droplet Deposition in a Micro-Groove (마이크로 Groove에서 액적충돌에 대한 수치적 연구)

  • Lee, Woo-Rim;Suh, Young-Ho;Sin, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.789-796
    • /
    • 2009
  • Microdroplet deposition in a micro-groove is studied numerically. The droplet shape is determined by a level-set method which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid-gas interface and the no-slip and contact angle conditions at an immersed solid surface. The computations are carried out to investigate the droplet behavior derived by the interfacial characteristics between the liquid-gas-solid phases. The effects of contact angle, impact velocity and groove geometry on droplet deposition in a micro-groove are quantified.

Assessment of a Phase Doppler Anemometry Technique in Dense Droplet Laden Jet

  • Koo, Ja-Ye;Kim, Jong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1083-1094
    • /
    • 2003
  • This study represents an assessment of the phase-Doppler technique to the measurements of dense droplet laden jet. High-pressure injection fuel sprays have been investigated to evaluate the use of the Phase-Doppler anemometry (PDA) technique. The critical issue is the stability of the phase-Doppler anemometry technique for dense droplet laden jet such as Diesel fuel spray in order to insure the results from the drop size and velocity measurements are repeatable, consistent, and physically realistic because the validation rate of experimental data is very low due to the thick optical density. The effect of shift frequency is minor, however, the photomultiplier tube (PMT) voltage setting is very sensitive to the data acquisition and noise in dense droplet laden jet. The optimum PMT voltage and shift frequency should be chosen so that the data such as volume flux and drop diameter do not change rapidly.

Influence of Droplet Drag Models on Diesel Spray Characteristics under Ultra-High Injection Pressure Conditions (극초고압 조건에서 디젤 분무 특성에 미치는 액적 항력 모델의 영향)

  • Ko, Gwon-Hyun;Lee, Seong-Hyuk;Lee, Jong-Tai;Ryou, Hong-Sun
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.42-49
    • /
    • 2004
  • The present article investigates the influence of droplet drag models on predictions of diesel spray behaviors under ultra-high injection pressure conditions. To consider drop deformation and shock disturbance, this study introduces a new hybrid model in predicting drag coefficient from the literature findings. Numerical simulations are first conducted on transient behaviors of single droplet to compare the hybrid model with earlier conventional model. Moreover, using two different models, extensive numerical calculations are made for diesel sprays under ultra-high pressure sprays. It is found that the droplet drag models play an important role in determining the transient behaviors of sprays such as spray tip velocity and penetration lengths. Numerical results indicate that this new hybrid model yields the much better conformity with measurements especially under the ultra-high injection pressure conditions.

  • PDF

Visualization of Drop Formation and Droplet Velocity Measurement of a Piezoelectric-type Inkjet (피에조 구동형 잉크젯에서 액적 형성의 가시화 및 토출속도 측정)

  • Kwon, D.H.;Choi, Y.S.;Lee, S.J.
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.9-13
    • /
    • 2008
  • The reproducibility of water droplet formation which is indispensible in the investigation of a drop-on-demand piezoelectrically driven inkjet was verified by checking the size of droplet and distance from the nozzle tip of inkjet head to droplet. Based on the reproducibility of droplet formation, we visualized the formation of micro-scale droplets by acquiring consecutive images at the jetting frequency of 500 Hz for which air bubbles were not generated. Two different electric waveforms were used to drive the piezoelectric actuator. The visualization system consists of a high-speed camera that can capture images up to 250,000fps, a long-distance microscope and a halogen lamp as a light source.

Simple and Highly Efficient Droplet Merging Method using Viscosity Difference (점도 차이를 이용한 간단하고 효율적인 액적의 병합 방법)

  • Jin, Byung-Ju;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1752-1757
    • /
    • 2008
  • Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. We observe that two droplets of the same size but of different viscosities are merged by velocity difference induced as they are transported with the carrier fluid. To make viscosity difference, the mass ratio of water and glycerol is varied. Two droplets of the same size or of different sizes are generated alternatingly in the cross channel by controlling flowrates. This droplet merging method can be used to mix or encapsulate one target sample with another material, so that it can be applied to cell lysis, particle synthesis, drug discovery, hydrogel-bead production, and so on.

  • PDF

Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel (고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF

Unsteady Mass Transfer Around Single Droplet Accompanied by Interfacial Extraction Reaction of Succinic Acid (숙신산 추출반응이 일어나는 단일 액적계에서의 비정상상태 물질 전달)

  • Jeon, Sangjun;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1021-1026
    • /
    • 2012
  • The transient mass transfer in a single droplet system consisting of 1-octanol (continuous phase)/aqueous succinic acid solution (dispersed phase) was investigated in the presence of chemical reaction, which is acid/anion exchange reaction of succinic acid and tri-n-octylamine (TOA). This succinic acid extraction by TOA can be considered to occur at the interface between organic and aqueous phase, that is, heterogeneous reaction system. The basic properties of the system such as viscosity, density, distribution coefficient, terminal velocity of droplet, and diffusion coefficient were measured experimentally or calculated theoretically, and used for theoretical calculation of characteristic parameters of mass transfer later. The effects of succinic acid concentration on the terminal velocity was negligible in the existence of TOA, although the terminal velocity increases with succinic acid concentration in the absence of TOA. On the contrary, the terminal velocity decreases with TOA concentration. While droplets falls through organic phase, the trajectory of droplets is observed to oscillate around its vertical path. A mass trnasfer cell was prepared to monitor the mass transfer behavior in a single droplet and used to measure the mean concentration of succinic acid inside droplet. The results are expressed with dimensionless parameters. Under 50 g/L succinic acid condition, the system with 0.1 mol/kg TOA showed that the molar flux decreases in proportion to the decrease of concentration gradient, while in the case of 0.5 mol/kg TOA Sh increases rapidly with time indicating the molar flux of succinic acid decreases relatively slowly compared to the decrease in concentration gradient.

Effect of the Swirler Angle and Aspect Ratio of Nozzle on the Mean Velocity and SMD of Twin Sprays (노즐의 스월러각과 형상비가 이중분무의 평균속도와 입경의 크기에 미치는 영향)

  • Kim, Young-Jin;Jung, Ji-Won;Choi, Gyoung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1459-1466
    • /
    • 2004
  • The purpose of this study is to investigate the effect of swirler angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single and twin spray. The characteristics of sprays have been investigated by measuring the spray angle, droplet size and velocity. Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber, but for the twin spray, the axial velocity and SMD were not influenced significantly by the changing the aspect ratio of swirl chamber. The effect of swirler angle on the spray characteristics was greater than the aspect ratio of swirl chamber for single spray. The nozzle pitch was one of the important factors affecting the spray characteristics of twin spray.