• Title/Summary/Keyword: Droplet Model

Search Result 340, Processing Time 0.021 seconds

Emulsification and Stability of Wheat Germ Oil in Water Emulsions: Optimization using CCD-RSM (밀배아유 원료 O/W 유화액의 제조 및 안정성평가: CCD-RSM을 이용한 최적화)

  • Hong, Seheum;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.562-568
    • /
    • 2021
  • An O/W (oil in water) emulsion, wheat germ oil raw material, was produced by using natural wheat germ oil and composite sugar-ester. The effects of variables such as the hydrophile-lipophile balance (HLB) value, added emulsifier amount, and emulsification time on the average particle size, emulsification viscosity and ESI of O/W wheat germ oil emulsion were investigated. The parameters of the emulsification process produced by the central composite design model of the response surface methodology (CCD-RSM), which is a reaction surface analysis method, were simulated and optimized. The optimum process conditions obtained from this paper for the production of O/W wheat germ oil emulsion were 8.4, 6.4 wt%, 25.4 min for the HLB value, amount of emulsifier, and emulsion time, respectively. The predicted reaction values by CCD-RSM model under the optimum conditions were 206 nm, 8125 cP, and 98.2% for mean droplet size (MDS), viscosity, and ESI, respectively, based on the emulsion after 7 days. The MDS, viscosity and ESI of the emulsion obtained from actual experiments were 209 nm, 7974 cP and 98.7%, respectively. Therefore, it was possible to design an optimization process for evaluating the stability of the emulsion of wheat germ oil raw material by CCD-RSM.

Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion (결빙 증식 최소화를 위한 다중 익형 형상 최적설계)

  • Kang, Min-Je;Lee, Hyeokjin;Jo, Hyeonseung;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.445-454
    • /
    • 2022
  • Ice accretion on the aircraft components, such as wings, fuselage, and empennage, can occur when the aircraft encounters a cloud zone with high humidity and low temperature. The prevention of ice accretion is important because it causes a decrease in the aerodynamic performance and flight stability, thus leading to fatal safety problems. In this study, a shape design optimization of a multi-element airfoil is performed to minimize the amount of ice accretion on the high-lift device including leading-edge slat, main element, and trailing-edge flap. The design optimization framework proposed in this paper consists of four major parts: air flow, droplet impingement and ice accretion simulations and gradient-free optimization algorithm. Reynolds-averaged Navier-Stokes (RANS) simulation is used to predict the aerodynamic performance and flow field around the multi-element airfoil at the angle of attack 8°. Droplet impingement and ice accretion simulations are conducted using the multi-physics computational analysis tool. The objective function is to minimize the total mass of ice accretion and the design variables are the deflection angle, gap, and overhang of the flap and slat. Kriging surrogate model is used to construct the response surface, providing rapid approximations of time-consuming function evaluation, and genetic algorithm is employed to find the optimal solution. As a result of optimization, the total mass of ice accretion on the optimized multielement airfoil is reduced by about 8% compared to the baseline configuration.

A Numerical Study of Tumble Effect on Spray/wall Impingement in the D. I. Engines (직접분사식 엔진내의 분무/벽 충돌 현상에서 텀블 효과에 관한 연구)

  • Chae, Soo;Yang, Hyup;Ryou, Su-Yeal;Ryou, Hong-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.45-57
    • /
    • 2002
  • In this paper, the results gained by applying many impingement models to the cylinder and flat plate were analyzed in comparison with the experimental data to study a spray/wall interaction phenomena. To begin with, the behavior of spray injected normal to the wall was analysed using three different impingement models ; Naber and Reitz model(NR model), Watkins and Wang model(WW model) and Park and Watkins model(PW model) in the present calculation. The results obtained from these models were compared with experimental data of Katsura et. al. The results indicated that PW model was in better agreement with experimental data than the NR and WW model. Also f3r spray injected at 30DEG , the result of three models were compared with experimental data of Fujimoto et. al. The results showed that m model overpredicted the penetration in the radial direction because this model was based on the inviscid jet analogy. WW model did not predicted the radius and height of the wall spray effectively. It might be thought that this discrepancy was due to the lack of consideration of spray film velocity occurred at impingement site. The result of PW model agrees with the experimental data as time goes on. In particular, a height of the spray droplets was predicted more closely to the experimental data than the other two models. The results of PW model in which the spray droplets were distributed densely around the edge of droplet distribution shaped in a circle had an agreement with the experimental data of Fujimoto et. al. Therefore, it was concluded that PW model performed better than M and WW model for prediction of spray behavior. The numerical calculation using PW model performed to the cylinder similar to the real shape of DI engine. The results showed that vortex strength near the wall in the cylinder was stronger than that in the case of flat plate. Contrary to the flat plat, an existence of the side wall in the cylinder caused the tangential velocity component to be reduced and the normal velocity component to be increased. The flow tends to rotate to the inside of cylinder going upward to the right side wall of cylinder gradually as time passes. Also, the results showed that as the spray angle increases, the gas velocity distribution and the tumble flow seemed to be formed widely.

Improvement of Cloud Physics Parameterization in the KMA Earth System Model (기상청 지구시스템모델에서의 구름입자 수농도 모수화 방법 개선)

  • Lee, Hannah;Yum, Seong Soo;Shim, Sungbo;Boo, Kyung-On;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • In the Korea Meteorological Administration earth system model (HadGEM2-AO), cloud drop number concentration is determined from aerosol number concentration according to the observed relationship between aerosol and cloud drop number concentrations. However, the observational dataset used for establishing the relationship was obtained from limited regions of the earth and therefore may not be representative of the entire earth. Here we reestablished the relationship between aerosol and cloud drop number concentrations based on a composite of observational dataset obtained from many different regions around the world that includes the original dataset. The new relationship tends to provide lower cloud drop number concentration for aerosol number concentration < 600 $cm^{-3}$ and the opposite for > 600 $cm^{-3}$. This new empirical relationship was applied to the KMA earth system model and the historical run (1861~2005) is made again. Here only the 30 year (1861~1890) averages from the runs with the new and the original relationships between aerosol and cloud drop number concentrations (newHIST and HIST, respectively) were compared. For this early period aerosol number concentrations were generally lower than 600 $cm^{-3}$ and therefore cloud drop number concentrations were generally lower but cloud drop effective radii were larger for newHIST than for HIST. The results from the complete historical run with the new relationship are expected to show more significant differences from the original historical run.

DEVELOPMENT OF 2ND GENERATION ICE ACCRETION ANALYSIS PROGRAM FOR HANDLING GENERAL 3-D GEOMETRIES (3차원 착빙 형상 예측을 위한 2세대 시뮬레이션 코드 개발)

  • Son, Chankyu;Oh, Sejong;Yee, Kwanjung
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.23-36
    • /
    • 2015
  • The $2^{nd}$ generation ice accretion analysis program has been developed and validated for various icing conditions. The essential feature of the $2^{nd}$ generation code lies in its capability of handling general 3-D geometry and improved accuracy. The entire velocity fields are obtained based on Navier-Stokes equations in order to take the massively separated flow field into account. Unlike $1^{st}$ generation code, the droplet trajectories are calculated using Eulerian approach, which is adopted to yield appropriate collection efficiency even in the shadow region. For improved thermodynamic analysis on the surfaces, water film model and modified Messinger model are newly included in the present analysis. The ice shape for a given time step is obtained by considering the exact amount of ice accreted on the surface. Each module of the icing analysis code has been seamlessly integrated on the OpenFOAM platform. The developed code was validated against available experimental data for 2D airfoils and 3D DLR-F4. Due to the lack of experimental data, the computed results of DLR-F4 were compared with those obtained from FENSAP-ICE, which is state-of-the-art 3D icing analysis code. It was clearly shown that the present code produces comparable results to those of FENSAP-ICE, in terms of prediction accuracy and the capability of handling general 3-D geometries.

Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels (얇은 수직 사각유로에서의 포화비등조건 임계열유속 예측)

  • Choi, Gil Sik;Chang, Soon Heung;Jeong, Yong Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.953-963
    • /
    • 2015
  • There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.

3D Numerical Simulation of Ice Accretion on a Rotating Surface

  • Mu, Zuodong;Lin, Guiping;Bai, Lizhan;Shen, Xiaobin;Bu, Xueqin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.352-364
    • /
    • 2017
  • A novel 3D mathematical model for water film runback and icing on a rotating surface is established in this work, where both inertial forces caused by the rotation and shear forces due to the air flow are taken into account. The mathematical model of the water film runback and energy conservation of phase transition process is established, with a cyclical average method applied to simulate the unsteady parameters variation at angles of attack. Ice accretion on a conical spinner surface is simulated and the results are compared with the experimental data to validate the presented model. Then Ice accretion on a cowling surface is numerically investigated. Results show that a higher temperature would correspond to a larger runback ice area and thinner ice layer for glaze ice. Rotation would enhance the icing process, while it would not significantly affect the droplet collection efficiency for an axi-symmetric surface. In the case at angle of attack, the effect of rotation on ice shape is appreciable, ice would present a symmetric shape, while in a stationary case the shape is asymmetric.

Analysis of Spray Combustion for the Performance Prediction of Liquid Rocket Combustor (3차원 분무연소장 해석에 의한 액체추진기관 연소실 성능예측에 대한 연구)

  • 황용석;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.31-39
    • /
    • 1999
  • In this paper, numerical experiment is attempted to analyze and compare the combustion efficiency of the burning sprays due to OFO, FOF triplet / FOOF split doublet injectors. Preconditioned Wavier-Stokes equation system with low Reynolds number $\kappa$-$\varepsilon$ model for turbulence closure, is LU-SGS time-integrated. Spray processes are modeled by DSF analysis with experimentally determined injection characteristics. n-heptane/air global reaction model approximates the combustion for simplicity, and the influence of turbulence on the chemical reaction is included using eddy dissipation model. The results showed the FOF triplet injector of highest combustion efficiency, whereas the OFO type of poet performance. It was also observed that the droplet mean diameter and the average gas temperature due to the mixing efficiency, are the representative parameters for the performance design of combustion.

  • PDF

Preparation of Cosmeceuticals Containing Flos Sophorae Immaturus Extracts: Optimization Using Box-Behnken Design Model (회화나무꽃 추출물이 함유된 Cosmeceuticals의 제조: Box-Behnken 설계모델을 이용한 최적화)

  • Yoo, Bong-Ho;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.404-410
    • /
    • 2020
  • In this study, the stability criteria of cosmeceuticals emulsion containing Flos Sophorae Immaturus extracts was established using the Box-Behnken design model (BBD-RSM). As optimization conditions of the emulsification using the BBD-RSM, the amount of surfactant and additive, and emulsification time and speed were used as quantitative factors while mean droplet size (MDS), viscosity and emulsion stability index (ESI) were used as reaction values. According to the result of BBD-RSM, optimum conditions for the emulsification were as follows; the emulsification time and speed of 17.8 min and 5505 rpm, respectively and amounts of the emulsifier and additive of 2.28 and 1.05 wt.%, respectively. Under these conditions, the MDS, viscosity, and ESI after 7 days from the reaction were estimated as 1875.5 nm, 1789.7 cP, and 93.8%, respectively. The average error value from our actual experiments for verifying the conclusions was below 5%, which is mainly due to the fact that the BBD-RSM was applied to the optimized cosmeceuticals emulsification.

Numerical Study of the Post Combustion Chamber of Grate Type Incinerator in Daejon 4th Industrial Complex (대전 4공단 소각로 후연소로 모델 연구)

  • Kim Hey-Suk;Shin Mi-Soo;Jang Dong-Soon;Park Byung-Soo;Um Tae-In
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.133-138
    • /
    • 2002
  • A 3-D axisymmetric computer program is developed to predict the NO behavior in SNCR system for the stoker incinerator with the waste treatment capacity, 200ton/day. To this end a turbulent reacting flow field calculation is made using proper assumption and empiricism. The stoker bed is assumed to be a homogeneous waste-volatilized gaseous state. The initial composition or reactants are assumed based on the data of the ultimate analysis. Turbulent is resolved by k-e model and turbulent reaction is handled by eddy-breakup model harmonized with empirical chemistry data for gaseous combustion, NO and urea reaction. The liquid droplet is traced by Lagrangian method incorporated by aerodynamic drag, Coriolis and crntrifugal forces. Radiation is treated by sensible heat loss model. Calculation results are in good agreement with experimental data at the outlet of post combustion chamber in Daejon 4th industrial complex. The flue gas shows the temperature range of $900\sim1000^{\circ}C$, velocity of 5m/s and NO concentration of 140ppm at the exit while the measured temperature, flue gas velocity and NO concentration are $967^{\circ}C$, $3\sim4m/s$ and $100\sim200ppm$respectively. Using the developed computer program a parametric study has been made with the variation of heat content of waste, castable length and SNCR variables for the determination of proper injector location. In general, the calculated results are consistent and physically acceptable.

  • PDF