• 제목/요약/키워드: Droplet Length

검색결과 94건 처리시간 0.02초

MACROSCOPIC STRUCTURE AND ATOMIZATION CHARACTERISTICS OF HIGH-SPEED DIESEL SPRAY

  • Park, S.-W.;Lee, C.-S.
    • International Journal of Automotive Technology
    • /
    • 제4권4호
    • /
    • pp.157-164
    • /
    • 2003
  • An experimental and numerical study was performed to investigate the macroscopic and microscopic atomization characteristics of high-speed diesel spray issued from the common-rail injection system. For the experiments, spray visualization system and a phase Doppler particle analyzer system were utilized to obtain the spray atomization characteristics such as the process of spray development, spray tip penetration, and SMD distribution. In order to analyze the process of spray atomization with KIVA-3 code, the TAB breakup model is changed to the KH-DDB competition model, which assumes the competition between the wave instability and droplet deformation causes the droplet breakup above the breakup length. The calculated results were also compared with the experiments in terms of spray tip penetration and SMD distribution. The results provide the process of spray development, axial and radial distribution of SMD, and calculated overall SMD as a function of time after start of injection.

점도변화에 따른 탄화수소계 연료의 분무특성에 관한 연구 (A study on the spray characteristics of hydrocarbon-fuels with viscosity variations)

  • 이용일;한재섭
    • 한국분무공학회지
    • /
    • 제6권3호
    • /
    • pp.23-31
    • /
    • 2001
  • An experimental study was carried out to understand the spray characteristics of three kinds(kerosene, heating oil & diesel) of hydrocarbon-fuels. Fuel temperature and injection pressure were main variables in the experiment. Fuel Temperature was changed to obtain various levels of fuel viscosity. Spray angle and spray length were measured by using LVS(Laser Vapor Screen) photographs. 1D PDPA system was used to measure droplet size & droplet velocity. In room temperature, spray characteristics of three kinds of fuels were good, especially in case the fuel injection pressure was more than $6Kgf/cm^2$ It was also found that spray characteristics were poor in case fuel kinematic viscosity was more than 5cSt.

  • PDF

Spray and Atomization Technologies in Pesticides Application: A Review

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제6권4호
    • /
    • pp.1-13
    • /
    • 2001
  • In the pesticides sprays, spray and atomization technologies to increase the deposition and reduce the drift are briefly reviewed. Further research is needed to deduce a measure of drift risk in sprays with different structures, velocity profiles. For flat fan nozzles, the data of breakup length and thickness of liquid sheet are essential to understand the atomization processes and develop the transport model to target. In the air-assisted spray technology to reduce drift, further works on the effect of application height on drift and air assistance on droplet size should be followed. In addition, methods for quantifying included air in the air inclusion techniques are required. A few researches on the droplet size of fallout can be found in the literature. A combined technology with electrostatic method into one of method for the reduction of drift may be an effective strategy for increasing deposition and reducing drift.

  • PDF

An Experimental Study of the Micro Turbojet Engine Fuel Injection System

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.1-5
    • /
    • 2008
  • An experimental study was performed to develop the rotational fuel injection system of the micro turbojet engine. In this system, fuel is sprayed by centrifugal forces of engine shaft. The test rig was designed and manufactured to get droplet information on combustion space. This experimental apparatus consist of a high speed rotational device(Air-Spindle), fuel feeder, rotational fuel injector and acrylic case. To understand spray characteristics, spray droplet size, velocity and distribution were measured by PDPA (Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the length of liquid column from injection orifice is controlled by the rotational speeds and Sauter Mean Diameter(SMD) is decreased with rotational speed. Also, Sauter Mean Diameter is increased as increasing mass flow rate at same rotational speeds.

  • PDF

정전분무에 의한 고점성 액체의 액적 생성 특성에 관한 실험적 연구 (An Experimental Study on Characteristics of Droplet Generation by Electrospraying for Highly Viscous Liquids)

  • 김상수;구본기
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.604-613
    • /
    • 2002
  • Generation characteristics of electrospray droplets for highly viscous liquid have been investigated by measuring size distributions of droplets emitted from the Taylor cone using glycerol solutions with various conductivities. Because of very small volatility of glycerol, droplet sizes can be measured by an aerodynamic size spectrometer (TSI Aerosizer DSP) with negligible evaporation of droplets. For highly conducting and viscous liquid, the sizes of the droplets electrosprayed from the Taylor cone are found to be relatively insensitive to applied voltages and the electrosprays assisted by the corona discharge call produce monodisperse droplets as long as the corona intensity is not too high. Near the minimum flow rate where a liquid cone is stable, the spray tends to consist of a one -peak monodisperse distribution of drop lets. However, at high flow rates, the spray bifurcates into bimodal distributions, which are consistent with the result of the previous study for less viscous liquids than our liquids. For liquid flow rates (Q) below 1 nl/s, the measured droplet diameters by the aerosizer are in the range of 0.30 to 1.2 ${\mu}{\textrm}{m}$ for the glycerol solutions. The diameters of monodisperse droplets scale approximately with $r^*=Q_$\tau$(Q$\tau$){^1/3}$ where $r^*$ is a characteristic length and $\tau$is the electrical relaxation time of the fluid. However, when compared with several represe ntative scaling laws, the droplet diameters are two to six factors greater than those predicted by the scaling laws. This may be closely related to the combined effect of the much higher viscosity and the electrical charge on the jet breakup of glycerol so solution.

Spray Characteristics of Electrostatic Pressure-Swirl Nozzle for Burner Application

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.16-23
    • /
    • 2002
  • Electrostatic pressure-swirl nozzle for practical oil burner application has been designed. The charge injection method has been used in this design, where the nozzle consists of a sharp pointed tungsten wire as a charge injector and the nozzle body grounded. The spray characteristics of the nozzles have been investigated by using an insulating liquid, i.e. kerosene without active surface agent. Breakup length of liquid decreased with an increase in applied voltage and injection pressure, while the spray angle increased with an increased in both applied voltage and injection pressure. An empirical equations have been suggested to predict the breakup length for electrostatic pressure-swirl atomizer. The experimental result was within the range of the predicted equations. The SMD decreased between the ranges of 2.8 ${\sim}$ 33% when the conventional nozzle was compared to the electrostatic with -10 kV applied to the electrode at a radial distance from 5 to 20 mm.

  • PDF

사이클론 방식 유분리기의 출구 튜브 설계 (Design of the Outlet-Port Tube of a Cyclone-Type Oil Separator for a Compressor)

  • 장성일;안준
    • 설비공학논문집
    • /
    • 제27권8호
    • /
    • pp.402-408
    • /
    • 2015
  • A series of numerical simulations have been carried out to study the performances of cyclone-type oil separators, which are designed for refrigeration-system compressors. The corresponding working fluid is R22, which is a typical refrigerant, whereby a mineral-oil droplet is supplied (Ed-highlight-My interpretation). The outlet-tube length in relation to the total chamber volume is considered a design parameter. Depending on the tube length, the separation efficiency varies from 98.7% to 99.3%, while the predicted pressure drop is between 5.1 kPa and 6.4 kPa. Considering both the pressure drop and separation efficiency, the length of the outlet-port tube of the separator is 152 mm.

유리섬유의 특성이 열가소성 복합재료의 기계적 성질에 미치는 영향 (Effects of the Glass Fiber Characteristics on the Mechanical Properties of Thermoplastic Composite)

  • 이중희;이정권;이경엽
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1697-1702
    • /
    • 2000
  • This study has been performed to investigate the effects of glass fiber characteristics on the mechanical properties of thermoplastic composite. The surface of glass fiber was coated with the silan e to enhance the bonding strength between fiber and matrix. A micro-droplet pull-off test was performed to investigate the influence of the silane concentration on the bonding strength. The maximum bonding strength was observed around 10.8% silane concentration. In order to examine the influence of the fiber length and fiber content on the properties of the composite, the composite materials involving tile fiber lengths of 5mm, 10mm, 15mm 20mm, and 25mm were tested. The composites used contain 20%, 30%, and 40% by weight of glass fibers. Tension and flexural tests were performed to investigate their mechanical properties of the composites. The tensile strength and tensile modulus of the composite increase with increasing the glass fiber content. The tensile modulus increases slightly with increasing the fiber length. The maximum tensile strength is observed around the fiber length of 15-20mm. The flexural modulus and strength also increase slightly with increasing the fiber length.

기체주입 충돌제트의 분무특성에 관한 실험적 연구 (Experimental Study on the Spray Characteristics of Aerated Impinging Jets)

  • 이근석;윤영빈;안규복
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.185-193
    • /
    • 2019
  • The effervescent atomizer is one of twin-fluid atomizers that aeration gas enters into bulk liquid and two-phase flow is formed in the mixing section. The effervescent atomizer requires low injection pressure and small amount of aeration gas, as compared to other twin-fluid atomizers. In this study, cold flow test was conducted to investigate the spray characteristics of aerated impinging jets. The present effervescent impinging atomizers were composed of the aerator device and like-on-like doublet impinging atomizer which had different impinging angles. To analyze the spray characteristics such as breakup length and droplet size distribution, the image processing technique was adopted by using instantaneous images at each flow condition. Non-dimensional parameters, induced by the homogeneous flow model, were used to predict the breakup length. The breakup length was decreased with the mixture Reynolds number and impinging angle increasing. The result of droplets showed that the size distribution was axisymmetric about the center of the injector and their diameter tended to decrease with increasing GLR.

Intermittent Atomization Characteristics of Multi-Hole and Single-Hole Diesel Nozzle

  • Lee, Jeekuen;Kang, Shin-Jae;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1693-1701
    • /
    • 2002
  • The intermittent spray characteristics of a multi-hole and a single-hole diesel nozzle were experimentally investigated. The hole number of the multi-hole nozzle was 5, and the hole diameter of the 5-hole and the single-hole nozzle was the same as d$\_$n/=0.32 ㎜ with the constant hole length to diameter ratio(l$\_$n//d$\_$n/=2.81). The droplet diameters of the spray, including the time-resolved droplet diameter, SMD (Sauter mean diameter) and AMD (arithmetic mean diameter) , injected intermittently from the two nozzles into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer). Through the time-resolved evolutions of the droplet diameter, it was found that the structure of the multi-hole and the single-hole nozzle spray consisted of the three main parts : (a) the leading edge affected by surrounding air. and composed of small droplets; (b) the central part surrounded by the leading edge and mixing flow region and scarcely affected by the resistance of air, (c) the trailing edge formed by the passage of the central part. The SMD decreases gradually with the increase in the radial distance, and the constant value is obtained at the outer region of the radial distance (normalized by hole diameter) of 7-8 and 6 for the 5-hole and single-hole nozzle, respectively. The SMD along the centerline of the spray decrease shapely with the increase in the axial distance after showing the maximum value near the nozzle tip. The SMD remains the constant value near the axial distance(normalized by hole diameter) of 150 and 180 for the 5-hole and the single-hole nozzle, respectively.