• 제목/요약/키워드: Drop-in Test

Search Result 1,194, Processing Time 0.025 seconds

Performance test and factor analysis on the performance of shutoff units with the research reactor (연구용 원자로의 정지봉 장치 성능에 미치는 인자 분석과 성능 시험)

  • Kim, Kyoung-Rean;Kim, Seoug-Beom;Ko, Jae-Myoung;Moon, Gyoon-Young;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.41-45
    • /
    • 2007
  • The shutoff unit was designed to provide rapid insertion of neutron absorbing material into the reactor core to shutdown the reactor quickly and also to withdraw the absorber slowly to avoid a log-rate trip. Four shutoff units were installed on the HANARO reactor but the half-core test facility was equipped with one shutoff unit. The reactor trip or shutdown is accomplished by four shutoff units by insertion of the shutoff rods. The shutoff rod(SOR) is actuated by a directly linked hydraulic cylinder on the reactor chimney, which is pressurized by a hydraulic pump. The rod is released to drop by gravity, when triplicate solenoid valves are de-energized to vent the cylinder. The hydraulic pump, pipe and air supply system are provided to be similar with the HANARO reactor. The shutoff rod drops for 647mm stroke within 1.13 seconds to shut down the reactor and it is slowly inserted to the full down position, 700mm, with a damping. We have conducted the drop test of the shutoff rod in order to show the performance and the structural integrity of operating system of the shutoff unit. The present paper deals with the 647mm drop time and the withdrawal time according to variation of the pool water temperature, the water level and the core flow.

Analysis of the Differences of the Shock Absorption Strategy between Drop-Landing and Countermovement-Jump (드롭 착지와 착지 후 점프 시 충격흡수 기전의 차이 분석)

  • Cho, Joon-Haeng;Kim, Kyoung-Hun;Koh, Young-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • The aim of this study was to investigate and identify the differences in lower extremity energy dissipation strategies between drop-landing and countermovement-jump maneuvers. Fourteen recreational athletes(Age : $23.3{\pm}2.1years$, Height : $172.3{\pm}4.0cm$, Weight : $69.2{\pm}4.7kg$) were recruited and instructed to perform drop-landing from 45 cm height and countermovement-jump from 45 cm to 20 cm height. The landing phase was taken as the time between initial contact and peak knee flexion. A motion-capture system consisting of eight infra-red cameras was employed to collect kinematics data at a sampling rate of 200 Hz and a force-plate was used to collect GRF data at a sampling rate of 2000 Hz. Paired t-test was performed to determine the difference in kinematics and kinetics variables between each task. During the countermovement-jump task, all of lower extremity joint ROM and the hip joint eccentric moment were decreased and the ankle joint plantarflexion moment was increased than drop-landing task. In the eccentric work during countermovement-jump task, the ankle joint displayed greater while knee and hip joint showed lesser than drop-landing. Therefore, the knee joint acted as the key energy dissipater during drop-landing while the ankle joint contributed the most energy dissipation during countermovement-jump. Our findings collectively indicated that different energy dissipation strategies were adopted for drop-landing and countermovement-jump.

An Experimental Study on Heat Transfer and Pressure Drop Characteristics during Supercritical Process of Carbon Dioxide in a Horizontal Tube (수평관 내에서 이산화탄소 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 최이철;강병하;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.414-420
    • /
    • 2004
  • The heat transfer and pressure drop characteristics associated with the gas cooling of the supercritical carbon dioxide in a horizontal tube have been investigated experimentally. This problem is of particular interest in the design of a gas cooler of cooling systems using $CO_2$refrigerant. The test section is consisted of 6 series of 455 mm in length, 4.15 mm ID copper tube, respectively. The effects of the inlet temperature, pressure and mass flow rate on the heat transfer and pressure drop of $CO_2$in a horizontal tube is studied in detail. The heat transfer coefficient of $CO_2$is varied by temperature, inlet pressure, and mass flow rate of $CO_2$. This has maximum value at near the pseudocritical temperature. The pressure drop is changed by inlet pressure and mass flow rate of $CO_2$. The results have been compared with those of previous work. The heat transfer correlation at the supercritical gas cooling process is also suggested.

Condensing Heat Transfer of Natural Refrigerants with Nanoparticles in Enhanced Tube (나노입자를 포함한 자연냉매의 마이크로 휜관 응축 열전달 특성)

  • Lee, H.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.19-25
    • /
    • 2008
  • This paper deals with the heat transfer and pressure drop characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for condensing. The test section is a horizontal double pipe heat exchanger. Condensing heat transfer and pressure drop measurements were Peformed for 12.70 mm micro-fin tube and compared with the results in smooth tube. The local condensing heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-600a. The average condensing heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Hydrocarbon refrigerants have a higher pressure drop than that of R-22 with respect to refrigerant qualify and mass flux. Also, the condensing heat transfer coefficient and pressure drop of working fluids in smooth and micro-fin tube were compared. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 2.2 to 2.6 in all experimental conditions.

  • PDF

Experimental investigation on the high frequency flow-induced vibration and pressure drop of cylindrical tube bundle with plate type supporting structures (플레이트형 지지구조체로 지지된 실린더형 관 군의 고주파 유동유발진동 및 압력손실에 대한 실험적 고찰)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Eom, Kyong-Bo;Kim, Jin-Sun;Suh, Jung-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1367-1372
    • /
    • 2008
  • A plate type supporting structure of a tube bundle in axial flow generates a certain band of a high frequency periodic excitation of a vortex shedding and/or a flow separation due to sharp edge of the plate thickness and a severe pressure drop due to a cross-sectional area of the supports. With a design consideration of the low vibration and a small flow resistance, the analysis method is uniquely confined to an experimental approach because a complex geometry of a cylindrical tube bundle and/or physical phenomena related to the fluid-structure interaction of tube bundle in a flow impede a theoretical or a numerical approach. A 5x5 cylindrical tube bundle with 5 supports which were discretely located along the bundle's axis was tested in the FIVPET hydraulic test loop for a design evaluation and an analysis perspectives. A high frequency flow-induced vibration of the supporting structures of the cylindrical tube bundle was measured at a outer surface of a supporting structure through a transparent flow housing by the laser dopper vibrometer. Pressure drop in-between three measurement distances was measured by the differential pressure transmitter. High frequency vibration and pressure drop fairly depends on the geometric design of supporting structure. So, these two parameters would be used as a qualitative design variables for design evaluation and analysis.

  • PDF

Cooling Performance Test of 2-stage Heat Pump System Using River Water as a Heat Source (하천수율원이용 2단압축 열펌프시스템 냉방성능평가)

  • Kim, J.R.;Lee, Y.S.;Jang, K.C.;Ra, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2129-2134
    • /
    • 2004
  • The present study has been conducted to develop a heat pump system using river water of temperature energy which not only belongs to unutilized energy but is a kind of good heat source due to maintain its temperature in a certain degree regardless of seasonal variation. The system did not meet the proposed performance after setup. In this paper, the system performance affected by refrigerant Oil, by pressure drop, or by other factors has been discussed. The followings were obtained : (1) Refrigerant Oil mixture rate was 2.5 in weight percentage, (2) Pressure drop through evaporator was 29.1kPa($3.1^{\circ}C$ in saturated tempearture) (3) Pressure drop from the end of evaporator to compressor inlet was 39.8kPa($4.0^{\circ}C$ in saturated tempearture). (4) The system performance can to be improved by modifying a part of pipe line to compressor, and reducing pressure drop through heat exchangers.

  • PDF

Characteristics of Evaporative Heat Transfer and Pressure Drop of Carbon Dioxide and Correlation Development near the Critical Point (임계점 부근에서 이산화탄소의 증발열전달 및 압력강하 특성 연구와 상관식 개발)

  • 윤석호;조은석;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.530-537
    • /
    • 2004
  • In recent years, carbon dioxide among natural refrigerants has gained consider-able attention as an alternative refrigerant due to its excellent thermophysical properties. However, few investigations have been performed to develop useful correlations of heat trans-fer coefficients and pressure drop during evaporation of carbon dioxide. This study is aiming at providing the characteristics of heat transfer and pressure drop during the evaporation process of carbon dioxide. Heat is provided by a direct heating method to the test section, which was made of a seamless stainless steel tube with an inner diameter of 7.53 mm, and a length of 5.0 m. Experiments were conducted at saturation temperatures of -4 to 2$0^{\circ}C$, heat fluxes of 12 to 20 ㎾/$m^2$ and mass fluxes of 200 to 530 kg/$m^2$s. A comparison of different heat transfer correlations applicable to evaporation of carbon dioxide has been made. Based on the experiments for evaporation heat transfer and pressure drop, new correlations were developed. The newly developed empirical correlations for the heat transfer and pressure drop show average absolute deviations of 15.3% and 16.2%, respectively.

A Study on Verification of PowerRail based on Voltage Drop under Extended Feeding Condition (연장급전 전압강하 계산을 위한 전기철도 급전 시뮬레이터의 검증에 관한 연구)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.331-337
    • /
    • 2015
  • The power flow analysis of electrified railway is required complicated calculation, because of variable load. Train runs trough rail supplied by electric power therefore, the load value in electrified railway system fluctuates along time. The power flow algorithm in electrified railway system is different from general power system, and the power flow simulation is peformed by the particular simulation software. Powerail is simulation software for analysis of traction power supply system developed by KRRI, in 2008. This consists of load forecasting module, including TPS and time scheduling, and power flow module. This software was verified by measured current under normal feeding condition, however, has not been verified by voltage on the condition of extended feeding. This paper presents the verification of PowerRail based on voltage drop under extended feeding condition. This is performed by comparing simulation result with field test. Field test and simulation is done in commercial railway line.

Accelerated Life Test and Data Analysis of the Silver Through Hole Printed Wiring Board (가속수명시험을 이용한 은도통홀 인쇄회로기판의 신뢰성연구)

  • 전영호;권이장
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.2
    • /
    • pp.15-27
    • /
    • 1997
  • This paper describes a highly accelerated life test (HALT, USPCBT) method for rapid qualification testing of STH PWB(Silver Through Hole Printed Wiring Boards). This method was carried out to be an alternative to the present time-consuming standard 1344 hours life testing(THB). The accelerated life test conditions were $121^{\circ}C$/95%R.H. at 50V bias and without bias. Their results are compared with those observed in the standard 1344 hours life test at $40^{\circ}C$/95%R.H. at 50V bias and without bias. The studies were focused on the samples time-to-failure as well as the associated conduction and failure mechanisms. The abrupt drop of insulation resistance is due to the absorption of water vapour. And the continuous drop of insulation resistance is due to the Ag migration. The ratios of time-to-failure of HALT(USPCBT) to THB were 25 and 11 at 50V bias and without bias respectively.

  • PDF

Structural Design of Polyethylene Boat Hull by using Longitudinal Bending Strength Test Method (종굽힘강도시험방법을 이용한 폴리에틸렌 보트 선체의 구조 설계)

  • Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8447-8454
    • /
    • 2015
  • ISO 12215-5 standard describes allowable stress design specifications of monohull small boat with a length of hull between 2.5 m and 24 m constructed from fiber reinforced plastics, aluminium or steel alloys, glued wood or other suitable boat building material. If small boat hull is under 2.5m in overall length or nonstandard material is used as boat building material, structural reliability of small boat hull is assured by drop test specification, but not by structural design specification in accordance with ISO 12215-5. Drop test specification of boat hull can be applied to manufactured product. But it is difficult and complicated to apply drop test specification to structural design of boat hull. In this study, we present structural design method of polyethylene boat hull on the basis of longitudinal bending strength test specification.