• Title/Summary/Keyword: Drop in Center

Search Result 561, Processing Time 0.03 seconds

Biomechanical Comparative Analysis of Two Goal-kick Motion in Soccer (두 가지 축구 골킥 동작의 운동역학적 비교 분석)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2005
  • The purpose of this study is to reveal the effects of two different kicks, the drop kick and the punt kick, into the kicking motion, through the kinetic comparative analysis of the kicking motion, which is conducted when one kicks a soccer goal. To grasp kinetic changing factors, which is performed by individual's each body segment, I connected kicking motions, which were analyzed by a two dimension co-ordination, into the personal computer to concrete the digits of it and smoothed by 10Hz. Using the smoothed data, I found a needed kinematical data by inputting an analytical program into the computer. The result of comparative analysis of two kicking motions can be summarized as below. 1. There was not a big difference between the time of the loading phase and the time of the swing phase, which can affect the exact impact and the angle of balls aviation direction. 2. The two kicks were not affected the timing and the velocity of the kicking leg's segment. 3. In the goal kick motion, the maximum velocity timing of the kicking leg's lower segment showed the following orders: the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.018sec) in the drop kick, and the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.015sec) in the punt kick. It showed that whipping motion increases the velocity of the foot at the time of impact. 4. At the time of impact, there was not a significant difference in the supporting leg's knee and ankle. When one does the punt kick, the subject spreads out his hip joint more at the time of impact. 5. When the impact performed, kicking leg's every segment was similar. Because the height of the ball is higher in the punt kick than in the drop kick, the subject has to stretch the knees more when he kicks a ball, so there is a significant affect on the angle and the distance of the ball's flying. 6. When one performs the drop kick, the stride is 0.02m shorter than the punt kick, and the ratio of height of the drop kick is 0.05 smaller than the punt kick. This difference greatly affects the center of the ball, the supporting leg's location, and the location of the center of gravity with the center of the ball at the time of impact. 7. Right before the moment of the impact, the center of gravity was located from the center of the ball, the height of the drop kick was 0.67m ratio of height was 0.37, and the height of the punt kick was 0.65m ratio of height was 0.36. The drop kick was located more to the back 0.21m ratio of height was 0.12, the punt kick was located more to the back 0.28m ratio of height was 0.16. 8. There was not a significant difference in the absolute angle of incidence and the maximum distance, but the absolute velocity of incidence showed a significant difference. This difference is caused from that whether players have the time to perform of not; the drop kick is used when the players have time to perform, and punt kick is used when the players launch a shifting attack. 9. The surface reaction force of the supporting leg had some relation with the approaching angle. Vertical reaction force (Fz) showed some differences in the two movements(p<0.05). The maximum force of the right and left surface reaction force (Fx) didn't have much differences (p<0.05), but it showed the tendency that the maximum force occurs before the peak force of the front and back surface (Fy) occurs.

A computational framework for drop time assessment of a control element assembly under fuel assembly deformations with fluid-structure interaction and frictional contact

  • Dae-Guen Lim;Gil-Yong Lee;Nam-Gyu Park;Yong-Hwa Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3450-3462
    • /
    • 2024
  • This paper presents a computational framework for drop time assessment of a control element assembly (CEA) under fuel assembly (FA) deformations. The proposed framework consists of three key components: 1) finite element modeling of CEA, 2) fluid-structure interaction to compute drag force, and 3) modeling of frictional contact between CEA and FA. Specially, to accommodate the large motion of CEA, beam elements based on absolute nodal coordinate formulation (ANCF) are adopted. The continuity equation is utilized to calculate the drag force, considering flow changes in the cross-sectional area during the CEA drop. Lastly, beam-inside-beam frictional contact model is employed to capture practical contact conditions between CEA and FA. The proposed framework is validated through experiments under two scenarios: free falls of CEA within FA, encompassing undeformed and deformed scenarios. The experimental validation of the framework demonstrated that the drop time of CEA can be accurately predicted under the complex coupling effects of fluid and frictional contact. The drop times of the S-shaped deformation case is longer than those of the C-shaped deformation case, affirming the time delay due to frictional force. The validation confirms the potential applicability to access the safety and reliability of nuclear power plants under extreme conditions.

Investigation of Performance Characteristics in a Welded Plate Heat Exchanger according to Mass flow rate and Temperature (용접식 판형열교환기에서 작동유체의 유량과 온도변화에 따른 성능특성 고찰)

  • Ham, Jeonggyun;Kim, Min-Jun;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.20-26
    • /
    • 2018
  • In this study, the performance characteristics of a welded plate heat exchanger was investigated experimentally. Performance tests were carried out according to the flow rate and inlet temperature of working fluid. As a result, the heat transfer capacity increased by 335.5 kW with an increasing the flow rate and temperature difference between hot and cold side. However, the overall heat transfer coefficient was increased with the increase of flow rate, and it was not effected significantly from inlet temperature difference between hot and cold working fluid. The pressure drop was increased by 55.78 kPa with an increasing the frow rate when the flow rate ratio between hot and cold side 1:1. However, the tendency of pressure drop was difference when flow rate ratio wasn't 1:1. In case that the flow rate ratio between hot and cold side was not 1:1, the pressure drop at the low flow rate side was higher than that when the flow rate ratio was 1:1, while pressure drop of the other side was decreased compared to that when the flow rate ratio was 1:1.

Performance Improvement on RED Based Gateway in TCP Communication Network

  • Prabhavat, Sumet;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.782-787
    • /
    • 2004
  • Internet Engineering Task Force (IETF) has been considering the deployment of the Random Early Detection (RED) in order to avoid the increasing of packet loss rates which caused by an exponential increase in network traffic and buffer overflow. Although RED mechanism can prevent buffer overflow and hence reduce an average values of packet loss rates, but this technique is ineffective in preventing the consecutive drop in the high traffic condition. Moreover, it increases a probability and average number of consecutive dropped packet in the low traffic condition (named as "uncritical condition"). RED mechanism effects to TCP congestion control that build up the consecutive of the unnecessary transmission rate reducing; lead to low utilization on the link and consequently degrade the network performance. To overcome these problems, we have proposed a new mechanism, named as Extended Drop slope RED (ExRED) mechanism, by modifying the traditional RED. The numerical and simulation results show that our proposed mechanism reduces a drop probability in the uncritical condition.

  • PDF

The Effects of Two - Phase Swirling Flow on Void Distribution and Pressure Drop in a Vertical Tube (수직관에서 2상선회유동이 보이드분포와 압력강하에 미치는 영향)

  • Kim, I.S.;Son, B.J.;Shin, H.D.;Kwack, K.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.190-201
    • /
    • 1989
  • This experimental investigation has been conducted to determine the effects of swirling angle and flow patterns on distributions of void fraction, bubble velocity and two-phase pressure drop in a vertical straight tube. Swirling angles of $0^{\circ}$ (non swirling), $30^{\circ}$, and $45^{\circ}$ were tested with air-water two components over a range of superficial air velocities. A transparent lucite tube of 38mm in internal diameter was used for the test section. The void fraction and bubble velocities were measured by means of a optical fiber probe at the upper part of the swirler in the test section. Pressure drops which seem to be closely related with flow patterns and swirling angle were measured by a differential pressure transducer. It is shown that the probability density functions of pressure drop demonstrate peculiar features for both swirling angles and flow patterns, whereas the distributions of void fraction and bubble velocities are parabolic and flat shape in the vicinity of tube center, respectively except bubbly flow in any swirling angle cases, and the void fraction increases with increasing swirling angle around the center of tube.

  • PDF

Effect of Water Temperature on Generation of Ion Migration (이온 마이그레이션 발생에 대한 수분온도의 영향)

  • Lee Deok Bo;Kim Jung Hyun;Kang Soo Keun;Kim Sang Do;Jang Seok Won;Lim Jae Hoon;Ryu Dong Soo
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.339-348
    • /
    • 2005
  • In evaluation of electronic reliability on the PCB(Printed Circuit Board),electrochemical migration is one of main test objects. The phenomenon of electrochemical migration occurs In the environment of the high humidity and the high temperature under bias through a continuous aqueous electrolyte. In this paper, the generating mechanism of electrochemical migration is investigated by using water drop acceleration test under various waters. The waters used in the water drop test are city water, distilled water and ionic water. It found that the generated velocity o of electrochemical migration depended on the temperature of water and the electrolyte quantity which included in the various waters.

  • PDF

The Analytic and Numerical Solutions of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer Models to the Strong Offshore Winds.

  • Lee, Hyong-Sun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.75-88
    • /
    • 1996
  • The analytic and numerical solution of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer models are derived. The large coastal-sea level drop and the fast westward speed of the anticyclonic gyre due to strong offshore winds using two ocean models are investigated. The models are forced by wind stress fields similar in structure to the intense mountain-pass jets(${\sim}$20 dyne/$cm^{2}$) that appear in the Gulfs of Tehuantepec and Papagayo in the Central America for periods of 3${\sim}$7 days. Analytic and numerical solutions compare favorably with observations, the large sea-level drop (${\sim}$30 cm) at the coast and the fast westward propagation speeds (${\sim}$13 km/day) of the gyres. The coastal sea-level drop is enhanced by several factors: horizontal mixing, enhanced forcing, coastal geometry, and the existence of a second active layer in the 2$\frac{1}{2}$-layer model. Horizontal mixing enhances the sea-level drop because the coastal boundary layer is actually narrower with mixing. The forcing ${\tau}$/h is enhanced near the coast where h is thin. Especially, in analytic solutions to the 2$\frac{1}{2}$-layer model the presence of two baroclinic modes increases the sea-level drop to some degree. Of theses factors the strengthened forcing ${\tau}$/h has the largest effect on the magnitude of the drop, and when all of them are included the resulting maximum drop is -30.0 cm, close to observed values. To investigate the processes that influence the propagation speeds of anticyclonic gyre, several test wind-forced calculations were carried out. Solutions to dynamically simpler versions of the 1$\frac{1}{2}$-layer model show that the speed is increased both by ${\beta}$-induced self-advection and by larger h at the center ofthe gyres. Solutions to the 2$\frac{1}{2}$-layer model indicate that the lower-layer flow field advects the gyre westward and southward, significantly increasing their propagation speed. The Papagayo gyre propagates westward at a speed of 12.8 km/day, close to observed speeds.

  • PDF

The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package

  • Kim, Hyun-Ho;Kim, Do-Hyung;Kim, Jong-Bin;Kim, Hee-Jin;Ahn, Jae-Ung;Kang, In-Soo;Lee, Jun-Kyu;Ahn, Hyo-Sok;Kim, Sung-Dong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.65-69
    • /
    • 2010
  • In this study, we investigated the effects of UBM(Under Bump Metallization) and solder composition on the drop impact reliability of wafer level packaging. Fan-in type WLP chips were prepared with different solder ball composition (Sn3.0Ag0.5Cu, and Sn1.0Ag0.5Cu) and UBM (Cu 10 ${\mu}m$, Cu 5 ${\mu}m$\Ni 3 ${\mu}m$). Drop test was performed up to 200 cycles with 1500G acceleration according to JESD22-B111. Cu\Ni UBM showed better drop performance than Cu UBM, which could be attributed to suppression of IMC formation by Ni diffusion barrier. SAC105 was slightly better than SAC305 in terms of MTTF. Drop failure occurred at board side for Cu UBM and chip side for Cu\Ni UBM, independent of solder composition. Corner and center chip position on the board were found to have the shortest drop lifetime due to stress waves generated from impact.

A Design Process for Reduction of Pressure Drop of Air-cooled Condenser for Waste Heat Recovery System (폐열 회수 시스템용 공랭식 응축기의 압력 손실 저감 설계)

  • Bae, Sukjung;Heo, Hyungseok;Park, Jeongsang;Lee, Hongyeol;Kim, Charnjung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.81-91
    • /
    • 2013
  • A novel design process of a parallel multi-flow type air-cooled condenser of a dual-loop waste heat recovery system with Rankine steam cycles for improving the fuel efficiency of gasoline automobiles has been investigated focusing on reduction of the pressure drop inside the micro-tubes. The low temperature condenser plays a role to dissipate heat from the system by condensing the low temperature loop working fluid sufficiently. However, the refrigerant has low evaporation temperature enough to recover the waste from engine coolant of about $100^{\circ}C$ but has small saturation enthalpy so that excessive mass flow rate of the LT working fluid, e.g., over 150 g/s, causes enormously large pressure drop of the working fluid to maintain the heat dissipation performance of more than 20 kW. This paper has dealt with the scheme to design the low temperature condenser that has reduced pressure drop while ensuring the required thermal performance. The number of pass, the arrangement of the tubes of each pass, and the positions of the inlet and outlet ports on the header are most critical parameters affecting the flow uniformity through all the tubes of the condenser. For the purpose of the performance predictions and the parametric study for the LT condenser, we have developed a 1-dimensional user-friendly performance prediction program that calculates feasibly the phase change of the working fluid in the tubes. An example is presented through the proposed design process and compared with an experiment.