• 제목/요약/키워드: Drop diameter

검색결과 559건 처리시간 0.022초

탄화수소계 냉매의 증발 열전달 및 압력강하 특성 (Characteristics on Evaporating Heat Transfer and Pressure Drop of HCs Refrigerants)

  • 이광배;이호생;김재돌;윤정인
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.681-687
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradients of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The test sections which has one tube diameter of 12.70 m with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were higher than that of R-22. The average evaporating heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than R-22 in 12.7 mm and 9.52 mm. This results form the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air- conditioning systems.

전산유체역학(CFD)를 활용한 정수공정에서 길이가 긴 유공관 설계 (Design of the long perforated pipe in water treatment process using CFD)

  • 조영만;유수전;노재순;빈재훈
    • 상하수도학회지
    • /
    • 제24권3호
    • /
    • pp.295-305
    • /
    • 2010
  • Role of the perforated pipe is to drain the water with equal pressure and velocity through the holes of perforated pipe. The perforated pipe is being used in many processes of water treatment system, however, the design parameter of perforated pipe is not standardized in korea. In this study, we have found the design parameter of perforated pipe in the water treatment system using the Computational Fluid Dynamics (CFD). The uniformity of outflow from the perforated pipe is directly affected according to area ratio(gross area of holes/surface area of the perforated pipe). In other words, the uniformity of outflow is improved as area ratio is smaller. Also, at the same area ratio, the uniformity of outflow is improved as number of holes is increase. Specially, in case of the two holes per length of pipe diameter(2/D) shows the most uniformity of outflow and the best hydraulic with the smaller pressure drop. The uniformity of outflow is aggravated and the pressure drop of pipe is decrease as length of pipe is longer. In case of that pipe length is 10m and above, the pressure drop decreased about 30% when diameter ratio is 40% with 0.2% of area ratio by comparison with 0.1% of area ratio.

수평관내 이산화탄소의 냉각열전달과 압력강하 특성에 관한 연구 (Heat transfer and pressure drop characteristics during cooling process of supercritical $CO_2$ in a horizontal tube)

  • 손창효;김종열;노건상;구학근;박기원;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.244-245
    • /
    • 2005
  • This paper presents the heat transfer and pressure drop characteristics during cooling process of carbon dioxide in a horizontal tube. The test section is a tube in tube type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. It was made of a stainless steel tube with the inner diameter of 7.75 [mm], the outer 2 diameter of 9.53 [mm] and length of 6000 [mm]. The refrigerant mass fluxes were $200{\sim}400$ [kg/$m^2s$] and the average pressure varied from 7.5 [MPa] to 10.0 [MPa]. The main results were summarized as follows The heat transfer coefficient of supercritical $CO_2$ increases in decrease of the gas cooler pressure. And the heat transfer coefficient increases with respect to the increase of the refrigerant mass flux. Among some correlations proposed in a transcritical region, Bringer-Smith's correlation has some analogy with experimental results. The pressure drop decreases in increase of the gas cooler pressure and increases with respect to increase the refrigerant mass flux.

  • PDF

주방환기용 그리스 필터의 성능예측 (Performance Prediction of a Grease Filter for Kitchen Ventilation)

  • 김기정;배귀남;김영일;허남건
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.313-316
    • /
    • 2002
  • A grease filter is used to remove grease generated from a cooking appliance in a kitchen. This numerical study has been conducted to investigate the particle collection characteristics of a grease filter having nominal flowrate of $100m^{3}/h$. The flow field and particle trajectories in the grease filter with a flow chamber were simulated by using the commercial code of STAR-CD. The pressure drop of a grease filter rapidly increases with increasing the air flowrate. The numerical values of the pressure drop are slightly lower than the experimental values when the air flowrates are 50, 75, and $100m^{3}/h$. The particle collection efficiency of a grease filter increases with increasing the particle diameter and the air flowrate, which means that the inertial impaction is a dominant particle removal mechanism in a grease filter The cut-off diameter of the tested grease filter representing $50-{\%}$ collection efficiency is about $11.6{\mu}m$ for water droplets at $100m^{3}/h$.

  • PDF

탄화수소계 냉매의 응축 열전달 및 압력강하 특성 (Characteristics of Condensing Heat Transfer and Pressure Drop of HCs Refrigerants)

  • 이호생;이광배;문춘근;김재돌;윤정인
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1143-1148
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradient of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during condensing inside horizontal double pipe heat exchangers are presented. The test sections which have one tube diameter of 12.70 mm with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than those of R-22. The average condensing heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than those of R-22 in 12.7 mm and 9.52 mm. This results from the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

  • PDF

주방환기용 그리스 필터의 입자포집 특성에 관한 수치해석 (A Numerical Study on the Particle Collection Characteristics of a Grease Filter for Kitchen Ventilation)

  • 김기정;배귀남;김영일;허남건
    • 설비공학논문집
    • /
    • 제14권10호
    • /
    • pp.792-800
    • /
    • 2002
  • A grease filter is used to remove grease generated from a cooking appliance in a kitchen. This numerical study has been conducted to investigate the particle collection characteristics of a grease filter having nominal flowrate of $100m^3$/h. The flow field and particle trajectories in the grease filter with a flow chamber were simulated by using the commercial code of STAR-CD. The air velocity and pressure distributions were discussed in detail. The pressure drop of a grease filter rapidly increases with increasing the air flowrate. The numerical values of the pressure drop are slightly lower than the experimental values when the air flowrates are 50, 75, and 100㎥/h. The particle collection efficiency of a grease filter increases with increasing the particle diameter, the particle density, and the air flowrate, which means that the inertial impaction is a dominant particle removal mechanism in a grease filter. The cut-off diameter of the tested grease filter representing 50-% collection efficiency is about 11.6$\mu$m for water droplets at $100m^3$/h.

Numerical Investigation on Frictional Pressure Loss in a Perfect Square Micro Channel with Roughness and Particles

  • Han Dong-Hyouck;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1266-1274
    • /
    • 2006
  • A numerical study is performed to investigate the effect of inner surface roughness and micro-particles on adiabatic single phase frictional pressure drop in a perfect square micro channel. With the variation of particles sizes (0.1 to $1{\mu}m$) and occupied volume ratio (0.01 to 10%) by particles, the Eulerian multi-phase model is applied to a $100{\mu}m$ hydraulic diameter perfect square micro channel in laminar flow region. Frictional pressure loss is affected significantly by particle size than occupied volume ratio by particles. The particle properties like density and coefficient of restitution are investigated with various particle materials and the density of particle is found as an influential factor. Roughness effect on pressure drop in the micro channel is investigated with the consideration of roughness height, pitch, and distribution. Additionally, the combination effect by particles and surface roughness are simulated. The pressure loss in microchannel with 2.5% relative roughness surface can be increased more than 20% by the addition of $0.5{\mu}m$ diameter particles.

원추형 오리피스의 유출계수와 캐비테이션에 관한 실험적 연구 (Experimental study on the discharge coefficients and cavitation of conical orifices)

  • 김병찬;윤병옥;박복춘;조남오;지대성;정백순;박경암
    • 대한기계학회논문집B
    • /
    • 제21권10호
    • /
    • pp.1371-1379
    • /
    • 1997
  • The high pressure drop is frequently required in the by-pass line of the pump or of the heat exchanger in power plants. However, cavitation produced by a high pressure drop could damage the pipe and pump blades. Conical orifices are adopted to reduce cavitation due to high pressure drop. The discharge coefficients of conical orifice plates were measured by weighing method in the standard water flow system. The discharge coefficients were larger when the ratios of thickness of orifice edge to throat diameter were larger. The noise generated from a conical orifice due to cavitation was measured with a sound level meter and a hydrophone. With increasing the bore diameter of the orifice, the sound pressure level or the noise level due to cavitation became higher. The noise level was suddenly increased at the inception of cavitation.

박용디젤기관의 대기오염 저감을 위한 습식 회전형 다공성 디스크 시스템의 집진특성 (Collection characteristics of wet-type rotating porous disk system for air pollutants removal of marine diesel engines)

  • 여석준;장창익
    • 수산해양기술연구
    • /
    • 제50권3호
    • /
    • pp.318-325
    • /
    • 2014
  • The main object of this study is to investigate the collection characteristics of wet-type rotating porous disk system experimentally. The experiment is carried out to analyze the pressure drop and collection efficiency for the present system with the experimental parameters such as system inlet velocity, stage number, tube diameter, inlet concentration, etc. In results, for the present system, at 5 stage and ${\upsilon}_{in}=1.8m/s$, the pressure drop becomes significantly lower as $64mmH_2O$ in comparison with that of the conventional wet type scrubber (Venturi scrubber, over $250mmH_2O$). The collection efficiencies increase with higher inlet velocity showing 92, 95.7, 98.4%, while $SO_2$ removal efficiencies decrease with increment of inlet velocity as 80, 65, 50% at ${\upsilon}_{in}=1.08$, 1.44, 1.8 m/s and tube diameter $D_t=10mm$, respectively. The present system is to be considered as an effective compact system for a simultaneous removal of particle/gas phase pollutants from marine diesel engines.

Optimization fluidization characteristics conditions of nickel oxide for hydrogen reduction by fluidized bed reactor

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Kim, Yong-Ha;Lee, Kwan-Young;Park, Young-Ok
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2321-2326
    • /
    • 2018
  • We evaluated the optimal conditions for fluidization of nickel oxide (NiO) and its reduction into high-purity Ni during hydrogen reduction in a laboratory-scale fluidized bed reactor. A comparative study was performed through structural shape analysis using scanning electron microscopy (SEM); variance in pressure drop, minimum fluidization velocity, terminal velocity, reduction rate, and mass loss were assessed at temperatures ranging from 400 to $600^{\circ}C$ and at 20, 40, and 60 min in reaction time. We estimated the sample weight with most active fluidization to be 200 g based on the bed diameter of the fluidized bed reactor and height of the stocked material. The optimal conditions for NiO hydrogen reduction were found to be height of sample H to the internal fluidized bed reactor diameter D was H/D=1, reaction temperature of $550^{\circ}C$, reaction time of 60 min, superficial gas velocity of 0.011 m/s, and pressure drop of 77 Pa during fluidization. We determined the best operating conditions for the NiO hydrogen reduction process based on these findings.