• 제목/요약/키워드: Drop diameter

검색결과 557건 처리시간 0.023초

Study on High Performance and Compact Absorber Using Small Diameter Heat Exchanger Tube

  • Yoon Jung-In;Phan Thanh Tong;Moon Choon-Geun;Kim Eun-Pil;Kim Jae-Dol;Kang Ki-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.463-473
    • /
    • 2006
  • The effect of tube diameter on heat and mass transfer characteristics of absorber in absorption chiller/heater using LiBr solution as a working fluid has been investigated by both of numerical and experimental study to develop a high performance and compact absorber. The diameter of the heat exchanger tube inside absorber was changed from 15.88mm to 12.70mm and 9.52mm. In numerical study a model of vapor pressure drop inside tube absorber based on a commercial 20RT absorption chiller/heater was performed. The effect of tube diameter, longitudinal pitch, vapor Reynolds number, longitudinal pitch to diameter ratio on vapor pressure drop across the heat exchanger tube banks inside absorber have been investigated and found that vapor pressure drop decreases as tube diameter increases, longitudinal pitch increases, vapor Reynolds number decreases and longitudinal pitch to diameter ratio increases. In experimental study, a system includes a tube absorber, a generator, solution distribution system and cooling water system was set up. The experimental results shown that the overall heat transfer coefficient, mass transfer coefficient. Nusselt number and Sherwood number increase as solution flow rate increases. In both of study cases, the heat and mass transfer performance increases as tube diameter decreases. Among three different tube diameters the smallest tube diameter 9.52mm has highest heat and mass transfer performance.

입자층(粒子層)을 이용한 열교환기(熱交換器) 개발(開發)에 관한 연구(硏究)(III) -고정층(固定層) 열교환기(熱交換器) 내(內)에서의 압력손실(壓力損失)에 관(關)한 연구(硏究) (Development of a Particle Bed Heat Exchanger (III) -An Experimental Study on Pressure Drop in Fixed Bed Heat Exchanger)

  • 양한주;서정윤
    • 설비공학논문집
    • /
    • 제2권3호
    • /
    • pp.226-233
    • /
    • 1990
  • Fixed bed is known to be an effective heat transfer augmentation device which could be applied to heat exchangers. In this study, pressure drop in vertical cylindrical and annular fixed beds with air flowing through was experimentally investigated. Based on the experimental data and some analytical considerations, the demensionless correlation of pressure drop has been determined and shown in empirical forms. In particular, the experimental equation for the pressure drop was derived using the particle diameter and the bed diameter as variables, which would be more practical and useful in the design of heat transfer devices, instead of void fraction which had been used previously as the major variables by others. The present empirical equation obtained for the cylindrical fixed bed were found to be applicable also to an annular fixed bed when the concept of effective diameter was introduced.

  • PDF

와류 분무 노즐에 의해 형성되는 액적들의 균일도에 액체의 점도가 미치는 영향 (Effect of liquid viscosity on the degree of uniformity of drops from swirl spray nozzles)

  • 이상용;김인구;조한권
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.538-546
    • /
    • 1989
  • 본 연구에서는 분사액체의 점도가 분무액적의 평균크기뿐만 아니라 표준편차 의 역수적 개념을 가지는 균일도에 주는 영향을 실험을 통하여 살펴보았다.

마이크로관 내 압력강하 특성 및 상관식에 관한 연구 (Pressure Drop in Microtubes and Correlation Development)

  • 황윤욱;김주혁;김민수
    • 설비공학논문집
    • /
    • 제18권1호
    • /
    • pp.38-46
    • /
    • 2006
  • The characteristics about the pressure drop in microtubes have been investigated. The test tubes are the circular, seamless, stainless steel tubes with an inner diameter of 0.244, 0.430, and 0.792 mm, respectively. R-l34a was used as a test fluid. Early flow transition which has been reported in some previous studies is not found in single-phase flow pressure drop tests. The conventional theory between friction factor and Reynolds number predicted the experimental friction factors within an absolute average deviation of $8.9\%$. The two-phase flow pressure drop increases for higher quality and mass flux, and for reduced inner diameter. The existing correlations fail to predict the experimental data. A new correlation to predict the two-phase flow pressure drop is developed in the form of the Lockhart-Martinelli correlation. The effects of the tube diameter and the surface tension were considered, and the correlation predicted the experimental data within an average absolute deviation of $8.1\%$.

단방향 사이클론의 유동 특성에 관한 수치해석적 연구 (Numerical Study on the Flow Characteristics of Uniflow Cyclone)

  • 염정기;짱슈어;신원규
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.77-83
    • /
    • 2020
  • A uniflow cyclone has simple structure with a single channel in one direction. The one directional particle removal enables the uniflow cyclone to have compact size and low pressure drop. However, it has low collection efficiency compared to conventional cyclones. In this study, the effect of primary geometry on the performance of a uniflow cyclone with swirl vane is numerically investigated for the design of high performance uniflow cyclone. It is found that as the vortex finder diameter is increased, the pressure drop and the collection efficiency are decreased. Also, the same trend is predicted when the vortex finder height is increased. The best collection efficiency is predicted to be obtained when the vortex finder height is equal to the diameter of a cyclone. Reducing the body height by half will increase the pressure drop by 41%. When the body height is decreased, the collection efficiency is first increased and then decreased. The best collection efficiency is obtained when the body height is 4~5 times the cyclone diameter. Overall, the particle collection efficiency is highest when the Dν/D is equal to 0.3. But, the pressure drop is as high as 1592 Pa. Considering both collection efficiency and pressure drop, the best design is when Dν/D, Hν/D, and Hb/D are equal to 0.5, 1, and 5, respectively.

기액 2상 유동에서 합지관에서의 압력강하에 대한 해석 (Analysis of Pressure Drop for Combining Junctions in Gas-Liquid Two-Phase Flows)

  • 김철환;하삼철;김은필;김경천
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.870-878
    • /
    • 2000
  • An experimental study and a modeling are peformed to investigate the pressure drop of combining junctions in two-phase flows. Experiments on tripod geometry used in a condenser or an evaporator, are conducted with inlet mass fluxes from 200 to$ 400 kg/m^2$s, and pipe diameters of 7 m and 9.52 m. The working fluid is R22. The result shows that the pressure drop increases as the quality does, but the effect of the increase of the pressure decreases when the diameter of a pipe increases. When the mass flux increases, the pressure drop linearly does. Furthermore, when the pipe diameter decreases, the pressure drop has a quadratic increase.

  • PDF

수평관내 HC계 냉매의 증발 압력강하 특성 (Characteristics on Evaporating Pressure Drop of HCs Refrigerants inside a horizontal tube)

  • 최준혁;이호생;김재돌;윤정인
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.63-64
    • /
    • 2006
  • Chracteristics on evaporating pressure drop of HCs refrigerants inside a horizontal tube were studied experimentally. Experimental results were presented for pressure drops of hydrocarbon refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 inside a horizontal double pipe heat exchanger. Three tubes with a tube diameter of 12.70mm, 9.52mm and 6.35mm were used for this study. Hydrocarbon refrigerants showed higher evaporating pressure drop than that of R-22 in all tubes. The highest pressure drop was founded in R-600a. The highest evaporating perssure drop of all refrigerants was shown in a tube diameter of 6.35mm with same mass flux. The results can be used as the basic data for the design of heat exchanger using hydrocarbon refrigerants as an alternatives.

  • PDF

모세관 내경 축소에 따른 소형멀티 냉동시스템의 성능특성변화 (A Study on Performance Characteristics of R134a Variation with a Capillary Tube Diameter and Length in a Domestic Small multi Refrigerator [Kim_Chi Refrigerator])

  • 이무연;최석재;김상욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1598-1603
    • /
    • 2004
  • This paper is an experimental study on the performance characteristic with a variation of capillary diameter and length. The performance characteristic of a refrigeration system is predicted that it is occurring changes of flow pattern and pressure drop in a capillary tube because of reduction of capillary diameter 0.74 to 0.6 mm. The difference between experimental results and analytical results is mainly caused by values of friction factor for using to calculate pressure drop through a small diameter capillary tube under 0.74mm. The experimental equation is derived from capillary tube test data using curve fitting method.

  • PDF

다공성소결윅구조에 따른 루프 히트파이프에서 압력손실의 이론적 분석 (Theoretical Analysis of the Pressure Drop in Loop Heat Pipe by Sintered Porous Wick Structure)

  • 이기우;이욱현;박기호;이계중;전원표;인현만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1225-1230
    • /
    • 2004
  • In this paper, the pressure drops were investigated according to the sintered porous wick structure in loop heat pipe(LHP) by theoretical analysis. LHP has the wick only in evaporator for the circulation of working fluid, so utilizes porous wick structure which pore diameter is very small for large capillary force. This paper investigates the effects of different parameters on the pressure drops of the LHP such as particle diameter of sintered porous wick, wick porosity, vapor line diameter, thickness of wick and heating capacity. Working fluid is water and the material of sintered porous wick is copper. According to the these different parameters, capillary pressure, pressure drop in wick were analized by theoretical design method of LHP.

  • PDF

내부혼합형 2유체 분사노즐의 형상에 따른 분무특성 (Spray Characteristics on Shape of Twin Fluid atomizer by Internal Mixing Chamber Type)

  • 윤수환;정대인;하종률
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.43-52
    • /
    • 1994
  • I investigated experomentally the spray characteristics to the operating conditions and the shapes of internal mixing twin fluid atomizer. The wide variations of air per liquid ratio are conducted to predit the influences of the Sauter mean diameter(SMD), spray angle, distribution of drop size, the flowing condition of gas and length, flowing, area of gas and liquid, and diameter, number and place of the orifice. In this experiment, air per liquid raio, mixing chamber length per diameter, orifice diameter, and the flowing area ratio of gas and fluid influences greatly on SMD, spray angle, distribution of drop size and intermittent fluctuation region.

  • PDF