• Title/Summary/Keyword: Drop Height

Search Result 419, Processing Time 0.024 seconds

Design of the Impact Absorber used for a Shuttle Car for LMTT with respect to the Drop Height of a Container (컨테이너의 낙하높이에 따른 LMTT 용 Shuttle Car 의 충격흡수기 설계)

  • 한동섭;한근조;심재준;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1479-1482
    • /
    • 2004
  • LMTT (Linear Motor-based Transfer Technology) is horizontal transfer system in the maritime container terminal for the port automation. The system is driven by PMLSM (Permanent Magnetic Linear Synchronous Motor) that is consists of stator modules on the rail and shuttle car. This paper investigates the effect of the drop height of container on impact reaction force of the Impact Absorber (IA) in shuttle car for LMTT. The results of this investigation are obtained from detailed finite element analysis for various parameters, such as the spring coefficient, the drop height of container.

  • PDF

Comparison of the thickness of the gastrocnemius through ultrasonography during heel-drop exercise performance

  • Gal, Dan-Bee;Lee, Su-Young
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.89-94
    • /
    • 2016
  • Objective: This study was aimed to compare the thickness and pennation angle of gastrocnemius through ultrasonography during the heel-drop exercise on ankle dorsiflexion angle. Design: Cross-sectional study. Methods: Nineteen normal adults in their 20s had voluntarily participated in this study. All subjects performed the ankle heel-drop exercise with ankle dorsiflexed to $0^{\circ}$, $10^{\circ}$, and $20^{\circ}$: heel-drop exercise with ankle dorsiflexed to $0^{\circ}$ was executed on floor-level, heel-drop exercise with ankle dorsiflexed to $10^{\circ}$ on a wooden-block of 2.3 cm in height, and heel-drop exercise with ankle dorsiflexed to $20^{\circ}$ on a wooden-block of 5.5 cm in height. In each regimen, the subjects completed a session of 100 heel-drop exercises (10 repetitions${\times}$10 sets; with 30 seconds rest following each set; with 24 hours rest following each exercise). Before and immediately after each heel-drop exercise, the thickness and pennation angle of gastrocnemius were measured using an ultrasonography. Results: After the performance of the heel drop exercises with ankle dorsiflexed to $0^{\circ}$, $10^{\circ}$, and $20^{\circ}$, the thickness of the gastrocnemius was significantly higher than pre-exercise (p<0.05), and furthermore heel-drop exercise with ankle dorsiflexed to $10^{\circ}$ was significantly higher than exercise with the ankle dorsiflexed to $0^{\circ}$ (p<0.05). However, as for the pennation angle of the gastrocnemius, there were no significant changes after each heel-drop exercise. Conclusions: This finding suggest that the heel-drop exercise with ankle dorsiflexed to $0^{\circ}$, $10^{\circ}$, and $20^{\circ}$ is effective on the strengthening of the gastrocnemius. Furthermore, the heel-drop exercise with the ankle dorsiflexed to $10^{\circ}$ is more effective than with the ankle dorsiflexed to $0^{\circ}$.

Centrifuge modeling of dynamically penetrating anchors in sand and clay

  • An, Xiaoyu;Wang, Fei;Liang, Chao;Liu, Run
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.539-549
    • /
    • 2022
  • Accidental anchor drop can cause disturbances to seabed materials and pose significant threats to the safety and serviceability of submarine structures such as pipelines. In this study, a series of anchor drop tests was carried out to investigate the penetration mechanism of a Hall anchor in sand and clay. A special anchor drop apparatus was designed to model the inflight drop of a Hall anchor. Results indicate that Coriolis acceleration was the primary cause of large horizontal offsets in sand, and earth gravity had negligible impact on the lateral movement of dropped anchors. The indued final horizontal offset was shown to increase with the elevated drop height of an anchor, and the existence of water can slow down the landing velocity of an anchor. It is also observed that water conditions had a significant effect on the influence zone caused by anchors. The vertical influence depth was over 5 m, and the influence radius was more than 3 m if the anchor had a drop height of 25 m in dry sand. In comparison, the vertical influence depth and radius reduced to less than 3 m and 2 m, respectively, when the anchor was released from 10 m height and fell into the seabed with a water depth of 15 m. It is also found that the dynamically penetrating anchors could significantly influence the earth pressure in clay. There is a non-linear increase in the measured penetration depth with kinematic energy, and the resulted maximum earth pressure increased dramatically with an increase in kinematic energy. Results from centrifuge model tests in this study provide useful insights into the penetration mechanism of a dropped anchor, which provides valuable data for design and planning of future submarine structures.

Comparison of Subjects with and without Pes Planus during Short Foot Exercises by Measuring Muscular Activities of Ankle and Navicular Drop Height

  • Park, Du-Jin;Park, Se-Yeon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.3
    • /
    • pp.133-139
    • /
    • 2018
  • PURPOSE: Despite the abundant literature available regarding the activity of intrinsic muscles, few studies have investigated the muscle activity of extrinsic muscles. Therefore, the present study compared the muscle activity of the peroneus longus, tibialis anterior, and abductor hallucis during short foot exercise in subjects with and without flat feet. METHODS: Twelve subjects with and without pes planus participated in this study. During the short foot exercises, muscular activity of the tibialis anterior, fibularis longus, and abductor hallucis longus were measured in both groups. To identify the effects of short foot exercises, navicular drop height was also investigated in pre and post short foot exercises. RESULTS: In a symptomatic group, the navicular drop height was significantly reduced at post measurement compared with pre-measurement. During the short foot exercise, the pes planus group showed significantly lower activities of the fibularis longus than the control group (p<.05). CONCLUSION: Similar to previous studies and clinical literature, short foot exercise was effective for alleviating navicular drop for a population with pes planus. In addition, subjects with pes planus showed decreased muscular activities of the fibularis longus, which suggests that considering extrinsic muscles such as fibularis longus is also important for rehabilitation of pes planus patients.

A Study on Sizing System for the Knit Trainning Wears-females from 15 to 24 years old- (니트츄리닝복의 치수 체계에 관한 연구-만 15~24세 여자를 중심으로-)

  • 문명옥;천태일
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.3
    • /
    • pp.335-344
    • /
    • 2000
  • The purpose of this study was to set up sizing system for knit trainning wears. Sample size was 198 females and their age range was from 15 to 24 years old. The body types for sizing system for knit trainning wears were divided by height and drop values. The results were as follows. 1. The height could be divided into three groups and they covered 97.5%. The Short(152cm) covered 27.8%, the Regular(160cm) 51.0% and the Tall(168cm) 18.7%. 2. The Medium hip(drop value 6) and the Large hip(drop value 12)had the high coverage rate of 45.5% and 46%, and the Small hip(drop value 0) had the low coverage rate of 8.6%. 3. For sizing system for knit trainning wears, the intervals of bust girth and hip girth were 5cm and 4cm. In the same size of bust girth, the intervals of hip high girth and waist girth were 1cm, the intervals of back waist length and sleeve length were 2cm and the interval of slacks length was 4∼5cm according to three height groups.

  • PDF

AIR ENTRAINMENT AND ENERGY DISSIPATION AT STEPPED DROP STRUCTURE

  • Kim Jin Hong
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.195-206
    • /
    • 2004
  • This paper deals with oxygen transfer by air entrainment and energy dissipations by flow characteristics at the stepped drop structure. Nappe flow occurred at low flow rates and for relatively large step height. Dominant flow features included an air pocket, a free-falling nappe impact and a subsequent hydraulic jump on the downstream step. Most energy was dissipated by nappe impact and in the downstream hydraulic jump. Skimming flow occurred at larger flow rates with formation of recirculating vortices between the main flow and the step comers. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number. It was more related to the flow discharge than to the Froude number. Energy dissipations in both cases of nappe flow and skimming flow were proportional to the step height and were inversely proportional to the overflow depth, and were not proportional to the step slope. The stepped drop structure was found to be efficient for water treatment associated with substantial air entrainment and for energy dissipation.

  • PDF

An Experimental Study on the Pressure Drop and Heat Transfer Performance in Tubes with Three Dimensional Roughness (삼차원 조도관의 압력손실 및 열전달 성능에 대한 실험적 연구)

  • Kim, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.276-286
    • /
    • 1995
  • In this study, pressure drop and heat transfer coefficients were measured in tubes with three dimensional roughness. Dimples were made by rotating the saw-tooth shaped finning disc on the outer tube surface. Resultant dimple shape was oval. Friction and heat transfer tests were performed with a range of roughness variables-roughness height 'e', axial roughness pitch 'p', circumferential roughness pitch 'z'. Within the test range, tube with e=0.5mm, z=5mm, p=3mm performed best. The efficiency ratio(rati of the heat transfer improvement and the pressure drop increase) of the tube approached 1.0 at low Reynolds number, and it was higher than that of the two-dimensional roughess tube of the same roughness height. Test data were predicted by 'discrete element method'. Results show that discrete element method underpredicts the friction data by 2% to 32%, and overpredicts the heat transfer data by-12% to 113%.

  • PDF

A Study on the shape deformation of ball projectile(5.56mm) under the low velocity impact (저속충격시 Ball 탄(5.56mm)의 형상변화에 관한 연구)

  • 손세원;이두성;홍성희;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.865-868
    • /
    • 2002
  • This study investigated the shape deformation of ball projectile(5.56mn) under the low energy impact by the use of the drop weight impact tester. ball projectile(5.56mm) consisted of the copper face with a lead core. The impact conditions were changed with the variations of the mass and the drop height of the impact tup. Shape deformation of ball projectile(5.56mm) after low velocity impact was measured using a video microscope and CCD camera. The test result showed that impact energy by changing of drop height of the impact tup affected shape deformation of ball projectile(5.56mm). So, it is important to study the relativity between shape deformation of ball projectile(5.56mm) and ballistic protection of plate(such as hybrid composite laminates) under the high velocity impact.

  • PDF

Numerical Study on the Effect of a Groove of D-type on Internal Flow and Pressure Drop in a Corrugated Pipe (주름관 내부 유동과 압력강하에 대한 D형 그루브의 영향에 관한 수치해석)

  • Hong, Ki Bea;Kim, Dong Woo;Ryou, Hong Sun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • A corrugated pipe is widely used in firefighting equipment and sprinkler pipes because of its elasticity, which is less damaged by deformation and convenient facilities. However, the corrugated shape of the wall results in complex internal turbulent flow, and it is difficult to predict the pressure drop, which is an important design factor for pipe flow. The pressure drop in the corrugated tube is a function of the shape factors of the pipe wall, such as groove height, length, and pitch. Existing studies have only shown a study of pressure drop due to length changes in the case of D-shaped tubes with less than 5 pitch (P) and height (K) of the rectangular grooves in the tube. In this work, we conduct a numerical study of pressure drop for P/Ks with length and height changes of 2.8, 3.5 and 4.67 with Re Numbers of 55,000, 70,000 and 85,000. The pressure drop in the corrugated tube was interpreted to decrease with smaller P/K. We show that the pressure drop is affected by the change in the groove aspect ratio, and the increase in the height of the groove increases the recirculation area, and the larger the Reynolds number, the greater the pressure drop.

Analysis of dust emission characteristic by drop impact on decomposed granite soil (낙하 충격에 의한 풍화토의 비산먼지 발생 특성 분석)

  • Min, Seul-Gi;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • Dust is mostly caused by human activity. The effect of natural factors on dust emission were studied in many research, but the little effort in researching artificial factors of dust emission. The object of study is to analysis dust emission characteristic by drop impact. Particle matter $10{\mu}m$ ($PM_{10}$) was measured by drop impact on paved soil with changing drop height, weight and drop size. Increasing drop height cause more $PM_{10}$ emission. Increasing drop weight cause more $PM_{10}$ emission but had limit weight for increasing dust emission. Because the exceed kinetic energy of drop weight penetrate the soil surface. The limit perimeter was exist that separating $PM_{10}$ emission aspect. Under limit perimeter, $PM_{10}$ emission was increasing while perimeter was increasing, but over limit perimeter showed the opposite aspect. Regression equations for estimating $PM_{10}$ with kinetic energy and perimeter were made under limit perimeter and over limit perimeter. The $R^2$ of those equations were 0.784, 0.743. The error has occurred between measured $PM_{10}$ and calculated $PM_{10}$ in the equation under limit perimeter. But using equation of case for over limit perimeter, PM10 can be estimated with kinetic energy and drop perimeter.