• 제목/요약/키워드: Drop/Impact Simulation

검색결과 68건 처리시간 0.022초

Construction and Evaluation of Scaled Korean Side Impact Dummies

  • Kim, Seong-Jin;Kwon Son;Park, Kyung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1894-1903
    • /
    • 2003
  • It is necessary to have a dummy that describes the anthropometry of a victim with accuracy. This study presents three scaled side impact dummies constructed for the use of MADYMO. They represent five, fifty and ninety-five percentile Korean males ranged from the age of 25 through 39. Thirty-five anthropometric data were used to scale input files required for MADYSCALE. Geometries, inertia, joints and other parameters for dummies were scaled based on the configurations of EuroSID-1. This study proposes the lateral impact response requirements for head, thorax and pelvis of Korean side impact dummies. A lateral drop impact test was conducted for the head at the height of 200 mm. Lateral pendulum impact tests were also carried out for thorax and pelvis at three specific impact velocities. All these test results were obtained from simulation based on MADYMO. All the procedures of the three tests followed the requirement of ISO/TR 9790.

플립칩의 매개변수 변화에 따른 보드레벨의 동적신뢰성평가 (Dynamic Reliability of Board Level by Changing the Design Parameters of Flip Chips)

  • 김성걸;임은모
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.559-563
    • /
    • 2011
  • Drop impact reliability assessment of solder joints on the flip chip is one of the critical issues for micro system packaging. Our previous researches have been showing that new solder ball compositions of Sn-3.0Ag-0.5Cu has better mechanical reliability than Sn-1.0Ag-0.5Cu. In this paper, dynamic reliability analysis using Finite Element Analysis (FEA) is carried out to assess the factors affecting flip chip in drop simulation. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard including 15 chips, solder balls and PCB are modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. It is found that larger chip size, smaller chip array, smaller ball diameter, larger pitch, and larger chip thickness have bad effect on maximum yield stress and strain at solder ball of each chip.

냉장고 낙하시 하힌지 동적변형 해석 (Finite Element Analysis of Dynamic Deformation of Refrigerator's Lower Hinge during Drop Test)

  • 홍석무;최용찬;엄성욱;김홍래;현홍철
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권1호
    • /
    • pp.37-44
    • /
    • 2015
  • 본 연구에서는 유한요소해석으로 냉장고 낙하충격에 대한 하힌지의 변형거동을 분석했다. 우선 하힌지 및 하부포장재 동적물성 확보를 위해 각각 속도 별 굽힘시험과 압축시험을 수행했다. 이어 시험에서 얻은 하중-변위곡선과 유사한 거동을 나타내는 하힌지 및 하부 포장재의 유동응력식을 역공학으로 얻었다. 확보한 물성데이터를 이용해 LS-DYNA로 낙하해석을 수행해, 낙하시 냉장고 자체 및 하힌지 변형거동을 분석했다. 최종적으로 3D 측정으로 분석한 실 냉장고 낙하시험으로, 낙하해석 모델의 유효성을 검증했다. 본 연구에서 제시한 해석모델은 추후 하힌지 및 포장재의 내 충격설계 등에 효과적으로 활용될 수 있을 것이다.

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

받음각을 갖는 평판의 유체 충격 시뮬레이션 (Numerical Simulation for Fluid Impact Loads by Flat Plate with Incident Angles)

  • 이병혁;정성준;류민철;김용수;박종천
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.1-9
    • /
    • 2008
  • The free-surface motions interacting with structures are investigated numerically using the Moving Particle Semi-implicit (MPS) method proposed by Koshizuka et al. (1996) for solving incompressible flow. In the method, Lagrangian moving particles are used instead of Eulerian approach using grid system. Therefore the terms of time derivatives in Navier-Stokes equation can be directly calculated without any numerical diffusion or instabilities due to the fully Lagrangian treatment of fluid particles and topological failure never occur. The MPS method is applied to the numerical study on the fluid impact loads for wet-drop tests in a LNG tank, and the results are compared with experimental ones.

Nonlinear Dynamic Buckling Behavior of a Partial Spacer Grid Assembly

  • Yoon, Kyung-Ho;Kang, Heung-Seok;Kim, Hyung-Kyu;Song, Kee-Nam;Jung, Yeon-Ho
    • Nuclear Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.93-101
    • /
    • 2001
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing them. In this paper, a numerical method for predicting the buckling strength of spacer grids is presented. Numerical analyses on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic finite element method using ABAQUS/Explicit. Buckling tests on several numbers of specimens of the spacer grid were also carried out in order to compare the results between the test and the simulation result. The drop test is accomplished by dropping a carriage on the specimen at a pre-determined position. From this test, the specimens are buckled only at the uppermost and the lowermost layer among the multi-cells, which is similar to the local buckling at the weakest point of the grid structure. The simulated results also similarly predicted the local buckling phenomena and were found to give good correspondence with the experimental values for the thin-walled grid structures.

  • PDF

TFT-LCD 모듈의 내충격성 향상을 위한 통합 CAE 시스템의 개발 (Development of Integrated CAE System for Mechanical Shock Proof Design of TFT-LCD Modules)

  • 서형원;문성인;구자춘;최재붕;김영진;최성식;이정권
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.135-141
    • /
    • 2004
  • Anti-shock performance is one of the most important design specifications of TFT-LCD modules. Since they are adopted fur major display units of many mobile applications such as lap-top PCs, cellular phones, and palm pilots, they are able to accommodate and endure high level transient mechanical energy inputs. For the reasons, not only the LCD unit manufacturers but their customers like PC makers perform a series of strict impact/drop test on the units. Currently, designers are mostly relying on their own trial-error based experience for the anti-shock design. Thus those designs depending on only experience may result in disqualification from the drop/impact test during final product evaluation. Those shock failures of any new designs are prohibitive for both LCD and PC manufacturers. In order to avoid this problem, many designers are focusing on the development of computer-aided design tools that is directly connected to shock simulation capabilities and then shock-proof design cycle time could be significantly reduced. Development of an integrated CAE system for the shock-proof design is presented in this article. At every stages of the development of present work, practical industrial applicability and mass production feasibility are seriously considered and tested so that the system is to be used in the LCD design engineering field.

열가소성 복합재료를 기반한 섬유금속적층판의 충격 거동에 관한 실험 및 수치적 연구 (Numerical and Experimental Investigation on Impact Performance of Fiber Metal Laminates Based on Thermoplastic Composites)

  • 이병언;강동식;박으뜸;김정;강범수;송우진
    • 한국자동차공학회논문집
    • /
    • 제24권5호
    • /
    • pp.566-574
    • /
    • 2016
  • Fiber metal laminates, which are hybrid materials consisting of metal sheets and composite layers, have contributed to aerospace and automotive industries due to their reduced weight and improved damage tolerance characteristics. In this study, the impact performance of the laminates, which are comprised of a self-reinforced polypropylene and two aluminum sheets, and the pure aluminum alloy sheet material were investigated experimentally via numerical simulation. In order to compare the impact performance, the laminates and aluminum alloy were examined by assessing the impact force, energy time histories, and specific energy absorption. ABAQUS is a commercial software that is used to simulate the actual drop-weight tests. Based on this study, it is noted that the impact performance of the laminates was superior to that of the aluminum alloy. In addition, a good agreement between the experimental and numerical results can be achieved when the impact force and energy time histories from the experiments and the numerical simulations are compared.

하드디스크 드라이브의 충격해석 및 실험적 검증 (Shock Simulation and Experimental Verification of HDD)

  • 김진곤;이재곤
    • 한국산학기술학회논문지
    • /
    • 제10권10호
    • /
    • pp.2583-2588
    • /
    • 2009
  • 본 논문에서는 반정현파 형태의 충격을 받는 HDD에 대한 충격해석을 수행하고, 그 타당성을 실험적으로 검증하였다. 일반적으로 센서를 이용한 제품의 충격실험을 통해서는 제한적인 정보만을 얻을 수 있지만, 컴퓨터를 이용한 해석기술은 제품의 파손현상을 규명하는데 필요한 보다 광범위하고 상세한 정보를 제공할 수 있는 장점을 가진다. 하지만, 이러한 해석결과는 여러 요인들에 따라 매우 민감하기 때문에 그 타당성을 검증하는 것이 중요하다. 따라서 본 연구에서는 200G/1ms의 전자기 충격실험과 300G/2ms의 낙하충격실험을 통하여 HDD의 조립단계별로 LS-DYNA를 이용한 유한요소해석의 신뢰성을 검증하였다.

언더필을 고려한 Sn-1.0Ag-0.5Cu 조성의 솔더볼을 갖는 플립칩에서의 보드레벨 낙하 및 진동해석 (Board Level Drop Simulations and Modal Analysis in the Flip Chips with Solder Balls of Sn-1.0Ag-0.5Cu Considering Underfill)

  • 김성걸;임은모
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.225-231
    • /
    • 2012
  • Drop simulations of the board level in the flip chips with solder joints have been highlighted for years, recently. Also, through the study on the life prediction of thermal fatigue in the flip chips considering underfill, its importance has been issued greatly. In this paper, dynamic analysis using the implicit method in the Finite Element Analysis (FEA) is carried out to assess the factors effecting on flip chips considering underfill. The design parameters are size and thickness of chip, and size, pitch and array of solder ball with composition of Sn1.0Ag0.5Cu. The board systems by JEDEC standard is modeled with various design parameter combinations, and through these simulations, maximum yield stress and strain at each chip are shown at the solder balls. Modal analysis is simulated to find out the relation between drop impact and vibration of the board system.