• 제목/요약/키워드: Droop control

검색결과 132건 처리시간 0.027초

Line Impedance Estimation Based Adaptive Droop Control Method for Parallel Inverters

  • Le, Phuong Minh;Pham, Xuan Hoa Thi;Nguyen, Huy Minh;Hoang, Duc Duy Vo;Nguyen, Tuyen Dinh;Vo, Dieu Ngoc
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.234-250
    • /
    • 2018
  • This paper presents a new load sharing control for use between paralleled three-phase inverters in an islanded microgrid based on the online line impedance estimation by the use of a Kalman filter. In this study, the mismatch of power sharing when the line impedance changes due to temperature, frequency, significant differences in line parameters and the requirements of the Plug-and-Play mode for inverters connected to a microgrid has been solved. In addition, this paper also presents a new droop control method working with the line impedance that is different from the traditional droop algorithm when the line impedance is assumed to be pure resistance or pure inductance. In this paper, the line impedance estimation for parallel inverters uses the minimum square method combined with a Kalman filter. In addition, the secondary control loops are designed to restore the voltage amplitude and frequency of a microgrid by using a combined nominal value SOGI-PLL with a generalized integral block and phase lock loop to monitor the exact voltage magnitude and frequency phase at the PCC. A control model has been simulated in Matlab/Simulink with three voltage source inverters connected in parallel for different ratios of power sharing. The simulation results demonstrate the accuracy of the proposed control method.

Improved Droop Method for Converter Parallel Operation in Large-Screen LCD TV Applications

  • Kim, Jung-Won;Jang, Paul
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.22-29
    • /
    • 2014
  • Current sharing between modules in a converter parallel operation is very important for the reliability of the system. This paper proposes an improved droop method that can effectively improve current sharing accuracy. The proposed method adaptively adjusts the output voltage set-point of each module according to the current set-points. Unlike conventional droop control, modules share a signal line to communicate with each other. Nevertheless, since signals are simple and in digital form, the complexity of the circuitry is much less and noise immunity is much better than those of conventional methods utilizing communication. The operation principle and design procedure of the proposed method are described in detail. Results of the experiment on two boost converters operating in parallel under the specification of a TFT LCD TV panel power supply verify the validity of the proposed scheme.

독립형 DC 마이크로그리드의 최적화 설계와 협조적 제어 (Optimized Design and Coordinated Control for Stand-alone DC Micro-grid)

  • 한태희;이지헌;김현준;한병문
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.63-71
    • /
    • 2013
  • This paper describes the coordinated droop control method for stand-alone type DC micro-grid to improve reliability and utilization of distributed generations and energy storage. The stand-alone type DC micro-grid consists of several distributed generations such as a wind power generation, solar power and micro-turbine, and energy storage. The proposed method which is based on autonomous control method shows high reliability and stability through coordinated droop control of distributed generations and energy storage and also capability of battery management. The operation of stand-alone type DC micro-grid was analyzed using detail simulation model with PSCAD/EMTDC software. Based on simulation results, a hardware simulator was built and tested with commercially available components and performance of system was verified.

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

Effects of an Angle Droop Controller on the Performance of Distributed Generation Units with Load Uncertainty and Nonlinearity

  • Niya, M.S. Koupaei;Kargar, Abbas;Derakhshandeh, S.Y.
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.551-560
    • /
    • 2017
  • The present study proposes an angle droop controller for converter interfaced (dispatchable) distributed generation (DG) resources in the islanded mode of operation. Due to the necessity of proper real and reactive power sharing between different types of resources in microgrids and the ability of systems to respond properly to abnormal conditions (sudden load changes, load uncertainty, load current disturbances, transient conditions, etc.), it is necessary to produce appropriate references for all of the mentioned above conditions. The proposed control strategy utilizes a current controller in addition to an angle droop controller in the discrete time domain to generate appropriate responses under transient conditions. Furthermore, to reduce the harmonics caused by switching at converters' output, a LCL filter is used. In addition, a comparison is done on the effects that LCL filters and L filters have on the performance of DG units. The performance of the proposed control strategy is demonstrated for multi islanded grids with various types of loads and conditions through simulation studies in the DigSilent Power Factory software environment.

1.2MW급 연료전지 EBOP를 위한 Droop control 방식의 인버터 병렬운전 제어기법 (Parallel Operation of Inverters Using Droop Control Method for 1.2MW Fuel Cell Electrical Balance of Plant)

  • 김형진;정상혁;최세완;김태희;이기풍;이태원
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.520-521
    • /
    • 2011
  • 인버터의 병렬운전은 인버터간의 특성, 선로임피던스 차이, 각 구성품들의 오차 등으로 인해 적정한 제어가 되지 않는 경우 인버터간의 순환전류가 발생하여 인버터의 무효전력 부담이 증가하여 전체 전력 시스템의 용량을 감소시키게 된다. 본 논문에서는 4병렬 인버터의 병렬제어 알고리즘으로서 전압지령치와 주파수지령치의 regulation 성능이 좋은 동기좌표계 droop 제어기법을 적용한 1.2MW급 연료전지용 EBOP를 제안한다.

  • PDF

불균등 임피던스 선로를 갖는 인버터기반 분산전원의 부하전압 불평형을 보상하는 드룹 제어 (Droop Control to Compensate Load Voltage Unbalance for Inverter-based Distributed Generations with Unequal Impedance Lines)

  • 양원모;김현준;한병문
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper proposes a droop control scheme to compensate the unbalanced line-to-line voltage of unbalanced 3-phase load which is coupled with two inverter-based distributed generations through unequal impedance lines. Unbalanced line-to-line load voltages occur due to using single-phase loads, which brings about bad effects on the coupled inverters and the distributed generations. In order to compensate the unbalanced line-to-line voltages, a positive sequence voltage control was used for sharing the active and reactive power and a negative sequence control was used for reducing the negative sequence voltage. The feasibility of the proposed scheme was first verified by computer simulations, and then experiments with a hardware set-up built in the lab. The experimental results were compared with the simulation results to confirm the feasibility of the proposed scheme.

전압 변동 보상항을 이용한 직류 마이크로그리드의 에너지 관리 기법 (Energy Management Method of DC Microgrids by Using Voltage Compensation Term)

  • 고병선;이기영;김석웅;김래영
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.328-335
    • /
    • 2018
  • An energy management method of DC microgrids using voltage compensation term is proposed in this study. Droop control is often implemented to operate the DC microgrid. However, the droop control necessarily generates voltage variation. Energy flow is also difficult to control because the droop control mainly focuses on proportional load sharing. To solve these problems, the voltage compensation term based on the low-bandwidth communication is used to determine the operating band of the converter. Energy management and voltage variation minimization can be achieved by judging the operating band according to the magnitude of voltage compensation term. The validity of the proposed method is verified by simulation and experiments.

Introduction of Generator Unit Controller and Its Tuning for Automatic Generation Control in Korean Energy Management System (K-EMS)

  • Park, Min-Su;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.42-47
    • /
    • 2011
  • Automatic generation control (AGC) is an important function for load frequency control, which is being implemented in Energy Management System (EMS). A key feature of AGC is to back up governors to enhance the performance of frequency control. The governor regulates system frequency in several to ten seconds, while the droop control concept results in steady-state control error. AGC is a supplementary tool for compensation of the steady-state error caused by the droop setting of the governors. As the AGC target is delivered to each generator as an open loop control target, the generator output is not guaranteed to follow the AGC target. In this paper, we introduce generating unit controller (GUC) control block, which has the purpose of enabling the generator output to track the AGC target while maintaining the governor performance. We also address the tuning methods of GUC for better performance of AGC in the Korea Energy Management System (K-EMS).

An Enhanced PCC Harmonic Voltage Mitigation and Reactive Power Sharing in Islanded Microgrid

  • Pham, Minh-Duc;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.138-140
    • /
    • 2018
  • Parallel distributed generators (DGs) in the islanded microgrid are generally operated autonomously by means of the droop control scheme. However, the traditional droop control methods which use the P-${\omega}$ and Q-E curve to share power between DGs are still concerned to improve the accuracy of reactive power sharing. Moreover, the uncontrolled harmonic power reduces the point of common coupling (PCC) voltage quality and microgrid stability. In order to solve these problems, this paper proposes an enhanced PCC harmonic control strategy and an improved reactive power sharing control scheme. Based on the low bandwidth communications, a secondary control is implemented with both central controller and local controller. The effectiveness of the proposed control scheme is analyzed through the simulation.

  • PDF