• Title/Summary/Keyword: Drone mapping

Search Result 51, Processing Time 0.032 seconds

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

Accuracy Analysis of Satellite Imagery in Road Construction Site Using UAV (도로 토목 공사 현장에서 UAV를 활용한 위성 영상 지도의 정확도 분석)

  • Shin, Seung-Min;Ban, Chang-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.753-762
    • /
    • 2021
  • Google provides mapping services using satellite imagery, this is widely used for the study. Since about 20 years ago, research and business using drones have been expanding. Pix4D is widely used to create 3D information models using drones. This study compared the distance error by comparing the result of the road construction site with the DSM data of Google Earth and Pix4 D. Through this, we tried to understand the reliability of the result of distance measurement in Google Earth. A DTM result of 3.08 cm/pixel was obtained as a result of matching with 49666 key points for each image. The length and altitude of Pix4D and Google Earth were measured and compared using the obtained PCD. As a result, the average error of the distance based on the data of Pix4D was measured to be 0.68 m, confirming that the error was relatively small. As a result of measuring the altitude of Google Earth and Pix4D and comparing them, it was confirmed that the maximum error was 83.214m, which was measured using satellite images, but the error was quite large and there was inaccuracy. Through this, it was confirmed that there are difficulties in analyzing and acquiring data at road construction sites using Google Earth, and the result was obtained that point cloud data using drones is necessary.

Accuracy verification for unmanned aerial vehicle system for mapping of amphibians mating call (양서류 번식음 맵핑을 위한 무인비행장치 시스템의 정확성 검증)

  • Park, Min-Kyu;Bae, Seo-Hyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.85-92
    • /
    • 2022
  • The amphibian breeding habitat is confirmed by mating call. In some cases, the researcher directly identifies the amphibian individual, but in order to designate the habitat, it is necessary to map the mating call region of the amphibian population. Until now, it has been a popular methodology for researchers to hear mating calls and outline their breeding habitats. To improve this subjective methodology, we developed a technique for mapping mating call regions using Unmanned Aerial Vehicle (UAV). The technology uses a UAV, fitted with a sound recorder to record ground mating calls as it flies over an amphibian habitat. The core technology is to synchronize the recorded sound pressure with the flight log of the UAV and predict the sound pressure in a two-dimensional plane with probability density. For a demonstration study of this technology, artificial mating call was generated by a potable speaker on the ground and recorded by a UAV. Then, the recorded sound data was processed with an algorithm developed by us to map mating calls. As a result of the study, the correlation coefficient between the artificial mating call on the ground and the mating call map measured by the UAV was R=0.77. This correlation coefficient proves that our UAV recording system is sufficiently capable of detecting amphibian mating call regions.

Impact of Smart device-based Spatial Information on the Perception of Citizens Participating in Community Mapping (스마트기기 기반 공간정보가 커뮤니티 매핑에 참여한 시민들의 인식에 미치는 영향)

  • MOON, Seong-Gon;KANG, Jung Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.56-76
    • /
    • 2022
  • This study shared with community mapping participants spatial analysis information, collected using smart devices, to give them an opportunity to objectively review their opinions. The study examined the impact of sharing such spatial information on residents' decision-making and perceptions. Yeongju-dong in Jung-gu district of Busan Metropolitan City, South Korea was selected for the case study; community mapping was carried out in Yeongju-dong to identify hazardous areas to improve pedestrian safety of primary school students. The community mapping participants drew a preliminary hazard map based on their experience and perception. Then, they drew a second hazard map after being given spatial information on pedestrian safety installations and pedestrian flow collected with smart devices including drones and sensors. Numerous changes in ranking across various sections occurred when the two maps were compared. There was a climb in the ranking of areas where the pedestrian flow was higher and lacked safety installations based on objective measurements over the perceptions of the participating people. Furthermore, according to a survey conducted among the participants, the provision of spatial analysis information using smart devices during community mapping process not only helped them recognize local community problems, but also raised their expectations that their submitted opinions would be reflected in policies. Moreover, the participants demonstrated increased self-confidence and faith in themselves as they were able to have more trust in the outcome they created.

Robustness for Scalable Autonomous UAV Operations

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2017
  • Automated mission planning for unmanned aerial vehicles (UAVs) is difficult because of the propagation of several sources of error into the solution, as for any large scale autonomous system. To ensure reliable system performance, we quantify all sources of error and their propagation through a mission planner for operation of UAVs in an obstacle rich environment we developed in prior work. In this sequel to that work, we show that the mission planner developed before can be made robust to errors arising from the mapping, sensing, actuation, and environmental disturbances through creating systematic buffers around obstacles using the calculations of uncertainty propagation. This robustness makes the mission planner truly autonomous and scalable to many UAVs without human intervention. We illustrate with simulation results for trajectory generation of multiple UAVs in a surveillance problem in an urban environment while optimizing for either maximal flight time or minimal fuel consumption. Our solution methods are suitable for any well-mapped region, and the final collision free paths are obtained through offline sub-optimal solution of an mTSP (multiple traveling salesman problem).

Ultrawideband coupled relative positioning algorithm applicable to flight controller for multidrone collaboration

  • Jeonggi Yang;Soojeon Lee
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.758-767
    • /
    • 2023
  • In this study, we introduce a loosely coupled relative position estimation method that utilizes a decentralized ultrawideband (UWB), Global Navigation Support System and inertial navigation system for flight controllers (FCs). Key obstacles to multidrone collaboration include relative position errors and the absence of communication devices. To address this, we provide an extended Kalman filter-based algorithm and module that correct distance errors by fusing UWB data acquired through random communications. Via simulations, we confirm the feasibility of the algorithm and verify its distance error correction performance according to the amount of communications. Real-world tests confirm the algorithm's effectiveness on FCs and the potential for multidrone collaboration in real environments. This method can be used to correct relative multidrone positions during collaborative transportation and simultaneous localization and mapping applications.

Use of a Drone for Mapping and Time Series Image Acquisition of Tidal Zones (드론을 활용한 갯벌 지형 및 시계열 정보의 획득)

  • Oh, Jaehong;Kim, Duk-jin;Lee, Hyoseong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • The mud flat in Korea is the geographical feature generated from the sediment of rivers of Korea and China and it is the important topography for pollution purification and fishing industry. The mud flat is difficult to access such that it requires the aerial survey for the high-resolution spatial information of the area. In this study we used drones instead of the conventional aerial and remote sensing approaches which have shortcomings of costs and revisit times. We carried out GPS-based control point survey, temporal image acquisition using drones, bundle adjustment, stereo image processing for DSM and ortho photo generation, followed by co-registration between the spatio-temporal information.

Analysis of Seabottom and Habitat Environment Characteristics based on Detailed Bathymetry in the Northern Shore of the East Sea(Gyeongpo Beach, Gangneung) (정밀 해저지형 자료 기반 동해 북부 연안(강릉 경포) 서식지 해저면 환경 특성 연구)

  • Lee, Myoung Hoon;Rho, Hyun Soo;Lee, Hee Gab;Park, Chan Hong;Kim, Chang Hwan
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.729-742
    • /
    • 2020
  • In this study, we analyze seabottom conditions and characteristics integrated with topographic data, seafloor mosaic, underwater images and orthophoto(drone) of soft-hard bottom area around the Sib-Ri rock in the northern shore of the East Sea(Gyeongpo Beach, Gangneung). We obtained field survey data around the Sib-Ri rock(about 600 m × 600 m). The Sib-Ri rock is formed by two exposed rocks and surrounding reef. The artificial reef zone made by about 200 ~ 300 structures is shown the western area of the Sib-Ri rock. The underwater rock region is extended from the southwestern area of the exposed the Sib-Ri rock with 9 ~ 11 m depth range. The most broad rocky seabottom area is located in the southwestren area of the Sib-Ri rock with 10 ~ 13 m depth range. The study area were classified into 4 types of seabottom environment based on the analysis of bathymetric data, seafloor mosaics, composition of sediments and images(underwater and drone). The underwater rock zones(Type I) are the most distributed area around the Sib-Ri Rock(about 600 m × 600 m). The soft seabottom area made by sediments layer showed 2 types(Type II: gS(gravelly Sand), Type III: S(Sand)) in the areas between underwater rock zones and western part of the Sib-Ri rock(toward Gyeongpo Beach). The artificial reef zone with a lot of structures is located in the western part of the Sib-Ri rock. Marine algae(about 6 species), Phylum porifera(about 2 species), Phylum echinodermata(about 3 species), Phylum mollusca(about 3 species) and Phylum chordata(about 2 species) are dominant faunal group of underwater image analysis area(about 10 m × 10 m) in the northwestern part of the Sib-Ri rock. The habitat of Phylym mollusca(Lottia dorsuosa, Septifer virgatus) and Phylum arthropoda(Pollicipes mitella, Chthamalus challengeri hoek) appears in the intertidal zone of the Sib-Ri rock. And it is possible to estimate the range and distribution of the habitat based on the integrated study of orthphoto(drone) and bathymetry data. The integrated visualization and mapping techniques using seafloor mosaic images, sediments analysis, underwater images, orthophoto(drone) and topographic data can provide and contribute to figure out the seabottom conditions and characteristics in the shore of the East Sea.

Crop Water Stress Index (CWSI) Mapping for Evaluation of Abnormal Growth of Spring Chinese Cabbage Using Drone-based Thermal Infrared Image (봄배추 생육이상 평가를 위한 드론 열적외 영상 기반 작물 수분 스트레스 지수(CWSI) 분포도 작성)

  • Na, Sang-il;Ahn, Ho-yong;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.667-677
    • /
    • 2020
  • Crop water stress can be detected based on soil moisture content, crop physiological characteristics and remote-sensing technology. The detection of crop water stress is an important issue for the accurate assessment of yield decline. The crop water stress index (CWSI) has been introduced based on the difference between leaf and air temperature. In this paper, drone-based thermal infrared image was used to map of crop water stress in water control plot (WCP) and water deficit plot (WDP) over spring chinese cabbage fields. The spatial distribution map of CWSI was in strong agreement with the abnormal growth response factors (plant height, plant diameter, and measured value by chlorophyll meter). From these results, CWSI can be used as a good method for evaluation of crop abnormal growth monitoring.

Electric Power Line Dips Measurement Using Drone-based Photogrammetric Techniques (드론 기반 사진측량기법을 활용한 고압 송전선의 처짐량 측정)

  • Kim, Yu Jong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.453-460
    • /
    • 2017
  • High voltage power transmission lines have been to keep the proper dip for maintenance. Powerline dips at a random point are conventionally measured by the direct or indirect observation but it is not only unsafe but labor-intensive. Therefore in this study we applied the photogrammetric technique to remotely measure the powerline dips. Since it is not easy to extract conjugate points from linear powerlines, we exploited the epipolar lines acrossing the powerlines for 3D mapping of the powerlines and dip measurements. The vertical mapping accuracy estimated at two field-surveyed power line points was 15~16cm that are within 5% of deflection at the points and less than 3% of the powerline dip.