• 제목/요약/키워드: Drone Network

검색결과 133건 처리시간 0.02초

Proposal of Network RTK-based Boundary Surveying Drone Using Mobile GCS (Mobile GCS를 이용한 Network RTK 기반 경계 복원 측량 드론)

  • Jeong, Eun-ji;Jang, Min-seok;Lee, Yon-sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제25권12호
    • /
    • pp.1942-1948
    • /
    • 2021
  • The cadastre in Korea was established with the outdated technology of the Japanese colonial period, and thus currently 15% of the Korea domestic land does not match the cadastral map. Accordingly, the government has been establishing the Korean cadastre under the name of 'Cadastral Re-investigation Project' and is changing the origin of the survey to the world geodetic system. Assuming that the project is completed, we propose a drone boundary survey method that can be used to easily survey using the exact digital cadastral information. The developed mobile GCS application can control the drone and acquire the boundary point coordinates recorded in the cadastre, and the drone automatically flies to mark the boundary points. The developed prototype of drone made a tour along the 6 boundary points in 2 minutes.

An Efficient MANET Routing Protocol for the Drone Delivery Communication Network System (드론 택배 통신망시스템을 위한 효율적인 MANET 라우팅 프로토콜)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제10권9호
    • /
    • pp.973-978
    • /
    • 2015
  • The drone delivery service as a new important business is emerging worldwide. American DHL parcel service is already running the delivery business using drones, and the Google, Amazon, and china's Alibaba, Baidu are also preparing for the same business. However, there are some problems in security and safety since the heavy parcels flies over the people walking down streets, so many things must be considered. The problems can be solved by communicating among drones to avoid collision. Therefore, the efficient network performance is essential, and to resolve the problem, in this paper, an efficient routing protocol is suggested by the Opnet simulator. The drone intercommunication network of MANET is designed and simulated for the efficient routing protocol.

A Rendezvous Point Replacement Scheme for Efficient Drone-based Data Collection in Construction Sites (공사현장에서 효율적인 드론 기반 데이터 수집을 위한 랑데부 포인트 교체 기법)

  • Kim, Taesik;Jung, Jinman;Min, Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제17권1호
    • /
    • pp.153-158
    • /
    • 2017
  • Rendezvous point is used to gather the data from sensor nodes and send to sink node efficiently in selected area. It incurs a unbalanced energy consumption nearby the rendezvous point which can shorten the network life time shortly. Thus, it is very important to select the rendezvous point effectively among all sensors in order to not drain the battery of a sensor node in construction sites. In this paper, we propose a rendezvous point replacement mechanism which considers remaining energy of nodes to prolong the network lifetime. Also, for shortening the distance of drone at the same time, it increases the probability of the near-by drone node becoming rendezvous point. The simulation results show that the proposed scheme can significantly improve the network lifetime and the flight distance compared with the existing LEACH, L-LEACH algorithm.

The Efficient Ship Wireless Sensor Network Using Drone (드론을 활용한 효율적인 선박 센서 네트워크)

  • Hong, Sung-Hwa;Kim, Byoung-Kug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제26권1호
    • /
    • pp.122-127
    • /
    • 2022
  • Currently, the drone is considered as a mobile base station of USN as a method to act as a base station using USN in existing LTE-M and LTE networks for data transmission in unmanned ships. Therefore, the drone, which is a mobile base station, is a sink node equipped with an LTE modem or a short-range communication modem, and can collect safety information of ship operation from the sensor node and transmit the safety information to the ship or transmit the information between the ships. As, if a short-range network is formed by using drones, it will form a communication network around unmanned ships and will be advantageous for collecting information using security and environmental sensors. In this paper, we propose a method to transmit environmental sensor data and to utilize communication between ships using drones to secure the surrounding information necessary for AI operation of unmanned ships in the future.

Drone Deployment Using Coverage-and-Energy-Oriented Technique in Drone-Based Wireless Sensor Network (드론 기반 무선 센서 네트워크에서의 커버리지와 에너지를 고려한 드론 배치)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제20권8호
    • /
    • pp.15-22
    • /
    • 2019
  • Awireless sensor network utilizes small sensors with a low cost and low power being deployed over a wide area. They monitor the surrounding environment and gather the associated information to transmit it to a base station via multi-hop transmission. Most of the research has mainly focused on static sensors that are located in a fixed position. Unlike a wireless sensor network based on static sensors, we can exploit drone-based technologies for more efficient wireless networks in terms of coverage and energy. In this paper, we introduce a transmission power model and a video encoding power model to design the network environment. We also explain a priority mapping scheme, and deploy drones oriented for network coverage and energy consumption. Through our simulations, this research shows coverage and energy improvements in adrone-based wireless sensor network with fewer sensors, compared to astatic sensor-based wireless sensor network. Concretely, coverage increases by 30% for thedrone-based wireless sensor network with the same number of sensors. Moreover, we save an average of 25% with respect to the total energy consumption of the network while maintaining the coverage required.

Analysis of Iran's Air Defense Network and Implications for the Development of South Korea's Air Defense Network

  • Hwang Hyun-Ho
    • International Journal of Advanced Culture Technology
    • /
    • 제12권2호
    • /
    • pp.249-257
    • /
    • 2024
  • This study analyzes the current status and prospects of Iran's air defense network, focusing on the Russian-made S-300 system, and derives implications for the development of South Korea's air defense network. Iran's air defense network exhibits strengths such as long-range detection and interception capabilities, multi-target processing, high-altitude interception, and electronic warfare response. However, it also reveals weaknesses, including lack of mobility, difficulty in detecting low-altitude targets, obsolescence, training level of operating personnel, and vulnerability to electronic warfare. Real-world cases confirm these weaknesses, making the system susceptible to enemy evasion tactics, swarm drone attacks, and electronic warfare. Drawing from Iran's case, South Korea should establish a multi-layered defense system, strengthen low-altitude air defense and electronic warfare capabilities, foster the domestic defense industry for technological self-reliance, and enhance international cooperation. By addressing these aspects, South Korea can establish a robust air defense network and firmly protect its national security. Future research should aim to secure and analyze materials from the Iranian perspective for a more objective evaluation of Iran's air defense network and continuously track Iran's efforts to improve its air defense network and the trend of strengthening drone forces to predict changes in the Middle East security situation.

Drone Simulation Technologies (드론 시뮬레이션 기술)

  • Lee, S.J.;Yang, J.G.;Lee, B.S.
    • Electronics and Telecommunications Trends
    • /
    • 제35권4호
    • /
    • pp.81-90
    • /
    • 2020
  • The use of machine learning technologies such as deep and reinforcement learning has proliferated in various domains with the advancement of deep neural network studies. To make the learning successful, both big data acquisition and fast processing are required. However, for some physical world applications such as autonomous drone flight, it is difficult to achieve efficient learning because learning with a premature A.I. is dangerous, cost-ineffective, and time-consuming. To solve these problems, simulation-based approaches can be considered. In this study, we analyze recent trends in drone simulation technologies and compare their features. Subsequently, we introduce Octopus, which is a highly precise and scalable drone simulator being developed by ETRI.

Deep Learning Based Drone Detection and Classification (딥러닝 기반 드론 검출 및 분류)

  • Yi, Keon Young;Kyeong, Deokhwan;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제68권2호
    • /
    • pp.359-363
    • /
    • 2019
  • As commercial drones have been widely used, concerns for collision accidents with people and invading secured properties are emerging. The detection of drone is a challenging problem. The deep learning based object detection techniques for detecting drones have been applied, but limited to the specific cases such as detection of drones from bird and/or background. We have tried not only detection of drones, but classification of different drones with an end-to-end model. YOLOv2 is used as an object detection model. In order to supplement insufficient data by shooting drones, data augmentation from collected images is executed. Also transfer learning from ImageNet for YOLOv2 darknet framework is performed. The experimental results for drone detection with average IoU and recall are compared and analysed.

Highway Drone Patrol Network Topology and Performance Analysis for Traffic Violation Enforcement (교통위반 단속을 위한 고속도로 드론 패트롤 네트워크의 토폴로지 및 성능분석)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제12권6호
    • /
    • pp.1043-1048
    • /
    • 2017
  • Since year 2016, in Korea, the police department started to use drones to patrol violated vehicles on the highway area. They monitor vehicle drivers who use side ways on the highway during traffic congested hours of the season, drunken drivers, or violent drivers. They use the 'Spot Mobility' method which floats the drones for 30 minute period. However, this method is inefficient since it requires manually charging batteries, gathering data, and operate drones with many numbers of policeman. Therefore, in this paper, for the efficient patrol in this purpose, I have suggested an effectively manageable network system consists of many drones as the wireless network nodes and with small numbers of policeman in a wide highway area. To accomplish this, the two topologies of effective drone patrol network systems are designed and simulated in OPNET simulator for performance evaluation.

Development of Distributed Drone Logistics Support Strategy for Modern Battlefield Environments (현대 전장 환경에 대응하는 분산형 드론 군수 지원 전략 개발)

  • Kyoung-Haing Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • 제10권5호
    • /
    • pp.209-217
    • /
    • 2024
  • This study aims to develop a distributed drone logistics support strategy to address the rapid changes and increasing complexity of modern battlefield environments. By analyzing the vulnerabilities and limitations of existing centralized logistics systems, this research proposes a new paradigm of distributed logistics support utilizing drone technology. The study presents a comprehensive approach, including the design of a distributed network-based drone logistics support model, development of dynamic route planning and mission reassignment algorithms, and operational strategies incorporating concealment and deception techniques. Furthermore, it proposes methods for verifying the effectiveness of the strategy through simulation and outlines the technical and human resource requirements for practical implementation. The results of this study are expected to significantly enhance the survivability and efficiency of logistics support systems in future battlefields and provide an innovative model applicable to civilian logistics sectors.