• Title/Summary/Keyword: Drone Imaging

Search Result 35, Processing Time 0.019 seconds

A Study on the Foul of Propeller Accident in The Sea - Theoretical Review of Drone-Based Hyperspectral Imaging for Floating Objects - (해양에서의 부유물 감김 사고에 대한 고찰 - 부유물 식별을 위한 드론기반 초분광 이미징 이론적 검토 -)

  • Shin-Baek Kang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.261-266
    • /
    • 2024
  • As the number of passenger ship users increases each year, the importance of traffic safety for passenger ship routes is becoming more prominent. A passenger ship is a multi-use vessel frequented by numerous individuals, and special attention to safety is imperative. To prevent and mitigate large-scale damage, preparedness for marine traffic accidents is crucial. Although significant efforts are being made to reduce accidents caused by floating objects in the ocean, such incidents have not significantly decreased. This study presents the results of a theoretical review on the technology for identifying floating objects using hyperspectral cameras. The effectiveness and usability of drone technology were also assessed. Additionally, the functionalities of polarization filters and hyperspectral cameras were evaluated. The study concluded that hyperspectral imaging technology is applicable for identifying floating objects and that future research should measure the degree of light reflection at sea level and further explore the inherent light wavelength emissions from these objects.

Landslide Prediction with Angle of Repose Prediction Using 3D Spatial Coordinate System and Drone Image Detection (3차원 공간 좌표 시스템과 드론 영상 검출을 활용한 산사태 안식각 예측에 관한 연구)

  • Yong-Ju Chu;Soo-Young Lim;Seung-Yop Lee
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.77-84
    • /
    • 2023
  • Forest fires are representative natural disasters resulting from dramatic global climate change in these modern times. When forest formation is insufficient due to forest damage caused by fire, secondary damages such as landslides occur during the winter thawing period and heavy rains. In most countries, only a limited area is managed as CCTV-centered monitoring systems for forest management. For the landslide prediction, markers containing 3D spatial coordinates were located on the slopes of the danger areas in advance. Then 3D mapping and angle of repose were obtained by periodic drone imaging. The recognition range and angle of view of markers were defined, and a new method for predicting signs of landslides in advance was presented in this study.

Development of Stream Cover Classification Model Using SVM Algorithm based on Drone Remote Sensing (드론원격탐사 기반 SVM 알고리즘을 활용한 하천 피복 분류 모델 개발)

  • Jeong, Kyeong-So;Go, Seong-Hwan;Lee, Kyeong-Kyu;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.57-66
    • /
    • 2024
  • This study aimed to develop a precise vegetation cover classification model for small streams using the combination of drone remote sensing and support vector machine (SVM) techniques. The chosen study area was the Idong stream, nestled within Geosan-gun, Chunbuk, South Korea. The initial stage involved image acquisition through a fixed-wing drone named ebee. This drone carried two sensors: the S.O.D.A visible camera for capturing detailed visuals and the Sequoia+ multispectral sensor for gathering rich spectral data. The survey meticulously captured the stream's features on August 18, 2023. Leveraging the multispectral images, a range of vegetation indices were calculated. These included the widely used normalized difference vegetation index (NDVI), the soil-adjusted vegetation index (SAVI) that factors in soil background, and the normalized difference water index (NDWI) for identifying water bodies. The third stage saw the development of an SVM model based on the calculated vegetation indices. The RBF kernel was chosen as the SVM algorithm, and optimal values for the cost (C) and gamma hyperparameters were determined. The results are as follows: (a) High-Resolution Imaging: The drone-based image acquisition delivered results, providing high-resolution images (1 cm/pixel) of the Idong stream. These detailed visuals effectively captured the stream's morphology, including its width, variations in the streambed, and the intricate vegetation cover patterns adorning the stream banks and bed. (b) Vegetation Insights through Indices: The calculated vegetation indices revealed distinct spatial patterns in vegetation cover and moisture content. NDVI emerged as the strongest indicator of vegetation cover, while SAVI and NDWI provided insights into moisture variations. (c) Accurate Classification with SVM: The SVM model, fueled by the combination of NDVI, SAVI, and NDWI, achieved an outstanding accuracy of 0.903, which was calculated based on the confusion matrix. This performance translated to precise classification of vegetation, soil, and water within the stream area. The study's findings demonstrate the effectiveness of drone remote sensing and SVM techniques in developing accurate vegetation cover classification models for small streams. These models hold immense potential for various applications, including stream monitoring, informed management practices, and effective stream restoration efforts. By incorporating images and additional details about the specific drone and sensors technology, we can gain a deeper understanding of small streams and develop effective strategies for stream protection and management.

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

A Study on the Density Analysis of Multi-objects Using Drone Imaging (드론 영상을 활용한 다중객체의 밀집도 분석 연구)

  • WonSeok Jang;HyunSu Kim;JinMan Park;MiSeon Han;SeongChae Baek;JeJin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.69-78
    • /
    • 2024
  • Recently, the use of CCTV to prevent crowd accidents has been promoted, but research is needed to compensate for the spatial limitations of CCTV. In this study, pedestrian density was measured using drone footage, and based on a review of existing literature, a threshold of 6.7 people/m2 was selected as the cutoff risk level for crowd accidents. In addition, we conducted a preliminary study to determine drone parameters and found that the pedestrian recognition rate was high at a drone altitude of 20 meters and an angle of 60°. Based on a previous study, we selected a target area with a high concentration of pedestrians and measured pedestrian density, which was found to be 0.27~0.30 per m2. The study shows it is possible to measure risk levels by determining pedestrian densities in target areas using drone images. We believe drone surveillance will be utilized for crowd safety management in the near future.

A Study on the Quality Control Plan for Bridge Pavement using drones (드론을 활용한 교면포장 품질관리 방안에 관한 연구)

  • Song, Mihwa;Gil, Heungbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • In Korea, drones, which are at the core of the 4th industrial revolution, are used to promote Korean New Deal policies to digitalize the SOC. Overseas, the use of convergence sensors, such as thermal imaging cameras, on drones is increasing in various industrial fields. In this research, to improve pavement quality in highway bridge pavement construction, a thermal imaging camera was mounted on a drone to measure and verify the temperature of the pavement work section. Using a laser thermometer allows the partial measurement of pavement temperature. It was confirmed that the proposed method allows not only real-time temperature monitoring of the whole pavement work section but also uniformity verification by checking temperature distribution. The proposed method has the potential to control highway pavement quality and enable quick decision-making on traffic opening times by reducing the possibility of misjudging road opening times(pavement surface temperature ≦ 40℃).

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Intuitive Controller based on G-Sensor for Flying Drone (비행 드론을 위한 G-센서 기반의 직관적 제어기)

  • Shin, Pan-Seop;Kim, Sun-Kyung;Kim, Jung-Min
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.319-324
    • /
    • 2014
  • In recent years, high-performance flying drones attract attention for many peoples. In particular, the drone equipped with multi-rotor is expanding its range of utilization in video imaging, aerial rescue, logistics, monitoring, measurement, military field, etc. However, the control function of its controller is very simple. In this study, using a G-sensor mounted on a mobile device, implements an enhanced controller to control flying drones through the intuitive gesture of user. The implemented controller improves the gesture recognition performance using a neural network algorithm.

Design of Drone for Underwater Monitoring and Net Cleaning for Aquaculture Farm (양식장 수중 모니터링 및 그물망 청소용 드론 설계)

  • Kim, Jin-Ha;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1379-1386
    • /
    • 2018
  • Conventional underwater cameras used in fish farms can only shoot limited areas and are vulnerable to underwater contamination. There is also a problem with contaminated farms as surplus residues are deposited as a result of feed supply to farms' nets. This paper proposes underwater drones for underwater monitoring of fish farms and cleaning nets. If underwater drones are used for management of fish farms, underwater imaging, monitoring and cleaning of fish farms' nets can be possible. By using this technology, data can be collected by detecting changes in the environment of a fish farm and responding to changes that occur within a fish farm based on the data. In addition, the establishment of an integrated control system will enable to build efficient and stable smart farms.

A Study on the Best Applicationsof Infra-Red(IR) Sensors Mounted on the Unmanned Aerial Vehicles(UAV) in Agricultural Crops Field (무인기 탑재 열화상(IR) 센서의 농작물 대상 최적 활용 방안 연구)

  • Ho-Woong Shon;Tae-Hoon Kim;Hee-Woo Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1073-1082
    • /
    • 2023
  • Thermal sensors, also called thermal infrared wavelength sensors, measure temperature based on the intensity of infrared signals that reach the sensor. The infrared signals recognized by the sensor include infrared wavelength(0.7~3.0㎛) and radiant infrared wavelength(3.0~100㎛). Infrared(IR) wavelengths are divided into five bands: near infrared(NIR), shortwave infrared(SWIR), midwave infrared(MWIR), longwave infrared(LWIR), and far infrared(FIR). Most thermal sensors use the LWIR to capture images. Thermal sensors measure the temperature of the target in a non-contact manner, and the data can be affected by the sensor's viewing angle between the target and the sensor, the amount of atmospheric water vapor (humidity), air temperature, and ground conditions. In this study, the characteristics of three thermal imaging sensor models that are widely used for observation using unmanned aerial vehicles were evaluated, and the optimal application field was determined.