• Title/Summary/Keyword: Drone Detection

Search Result 176, Processing Time 0.024 seconds

MTD (Moving Target Detection) with Preposition Hash Table for Security of Drone Network (드론 네트워크 보안을 위한 해시표 대체 방식의 능동 방어 기법)

  • Leem, Sungmin;Lee, Minwoo;Lim, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.477-485
    • /
    • 2019
  • As the drones industry evolved, the security of the drone network has been important. In this paper, MTD (Moving Target Detection) technique is applied to the drone network for improving security. The existing MTD scheme has a risk that the hash value is exposed during the wireless communication process, and it is restricted to apply the one-to-many network. Therefore, we proposed PHT (Preposition Hash Table) scheme to prevent exposure of hash values during wireless communication. By reducing the risk of cryptographic key exposure, the use time of the cryptographic key can be extended and the security of the drone network will be improved. In addition, the cryptographic key exchange is not performed during flight, it is advantageous to apply PHT for a swarm drone network. Through simulation, we confirmed that the proposed scheme can contribute to the security of the drone network.

Flight Path Measurement of Drones Using Microphone Array and Performance Improvement Method Using Unscented Kalman Filter (마이크로폰 어레이를 이용한 드론의 비행경로 측정과 무향칼만필터를 이용한 성능 개선법에 대한 연구)

  • Lee, Jiwon;Go, Yeong-Ju;Kim, Seungkeum;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.975-985
    • /
    • 2018
  • The drones have been developed for military purposes and are now used in many fields such as logistics, communications, agriculture, disaster, defense and media. As the range of use of drones increases, cases of abuse of drones are increasing. It is necessary to develop anti-drone technology to detect the position of unwanted drones using the physical phenomena that occur when the drones fly. In this paper, we estimate the DOA(direction of arrival) of the drone by using the acoustic signal generated when the drone is flying. In addition, the dynamics model of the drones was applied to the unscented kalman filter to improve the microphone array detection performance and reduce the error of the position estimation. Through simulation, the drone detection performance was predicted and verified through experiments.

Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques (드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발)

  • Ryu, Jae-Hyun;Han, Jung-Gon;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.535-543
    • /
    • 2022
  • A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.

Advancements in Drone Detection Radar for Cyber Electronic Warfare (사이버전자전에서의 드론 탐지 레이다 운용 발전 방안 연구)

  • Junseob Kim;Sunghwan Cho;Pokki Park;Sangjun Park;Wonwoo Lee
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.73-81
    • /
    • 2023
  • The progress in science and technology has widened the scope of the battlefield, leading to the emergence of cyber electronic warfare that exploits electromagnetic waves and networks. Drones have become more important due to advancements in battery technology and navigation systems. Nevertheless, tackling drone threats comes with its own set of difficulties. Radar plays a vital role in detecting drones, offering long-range capabilities and independence from weather conditions. However, the battlefield presents unique challenges like dealing with high levels of signal noise and ensuring the safety of the detection assets. This paper proposes various approaches to improve the operation of drone detection radar in cyber electronic warfare, with a focus on enhancing signal processing techniques, utilizing low probability of interception (LPI) radar, and implementing optimized deployment strategies.

An Analysis on Anti-Drone Technology Trends of Domestic Companies Using News Crawling on the Web (뉴스 기사의 크롤링을 통한 국내 기업의 안티 드론에 사용되는 기술 현황 분석)

  • Kim, Kyuseok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.458-464
    • /
    • 2020
  • Drones are being spreaded for the purposes such as construction, logistics, scientific research, recording, toy and so on. However, anti-drone related technologies which make the opposite drones neutralized are also widely being researched and developed because some drones are being used for crime or terror. The range of anti-drone related technologies can be divided into detection, identification and neutralization. The drone neutralization methods are divided into Soft-kill one which blocks the detected drones using jamming and Hard-kill one which destroys the detected ones physically. In this paper, Google and Naver domestic news articles related to anti-drone were gathered. Analyzing the domestic news articles, 8 of related technologies using RF, GNSS, Radar and so on were found. Regarding as this, the general features and usage status of those technologies were described and those on anti-drone for each company and agency were gathered and analyzed.

Indoor Environment Drone Detection through DBSCAN and Deep Learning

  • Ha Tran Thi;Hien Pham The;Yun-Seok Mun;Ic-Pyo Hong
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • In an era marked by the increasing use of drones and the growing demand for indoor surveillance, the development of a robust application for detecting and tracking both drones and humans within indoor spaces becomes imperative. This study presents an innovative application that uses FMCW radar to detect human and drone motions from the cloud point. At the outset, the DBSCAN (Density-based Spatial Clustering of Applications with Noise) algorithm is utilized to categorize cloud points into distinct groups, each representing the objects present in the tracking area. Notably, this algorithm demonstrates remarkable efficiency, particularly in clustering drone point clouds, achieving an impressive accuracy of up to 92.8%. Subsequently, the clusters are discerned and classified into either humans or drones by employing a deep learning model. A trio of models, including Deep Neural Network (DNN), Residual Network (ResNet), and Long Short-Term Memory (LSTM), are applied, and the outcomes reveal that the ResNet model achieves the highest accuracy. It attains an impressive 98.62% accuracy for identifying drone clusters and a noteworthy 96.75% accuracy for human clusters.

Development of Marine Debris Monitoring Methods Using Satellite and Drone Images (위성 및 드론 영상을 이용한 해안쓰레기 모니터링 기법 개발)

  • Kim, Heung-Min;Bak, Suho;Han, Jeong-ik;Ye, Geon Hui;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1109-1124
    • /
    • 2022
  • This study proposes a marine debris monitoring methods using satellite and drone multispectral images. A multi-layer perceptron (MLP) model was applied to detect marine debris using Sentinel-2 satellite image. And for the detection of marine debris using drone multispectral images, performance evaluation and comparison of U-Net, DeepLabv3+ (ResNet50) and DeepLabv3+ (Inceptionv3) among deep learning models were performed (mIoU 0.68). As a result of marine debris detection using satellite image, the F1-Score was 0.97. Marine debris detection using drone multispectral images was performed on vegetative debris and plastics. As a result of detection, when DeepLabv3+ (Inceptionv3) was used, the most model accuracy, mean intersection over union (mIoU), was 0.68. Vegetative debris showed an F1-Score of 0.93 and IoU of 0.86, while plastics showed low performance with an F1-Score of 0.5 and IoU of 0.33. However, the F1-Score of the spectral index applied to generate plastic mask images was 0.81, which was higher than the plastics detection performance of DeepLabv3+ (Inceptionv3), and it was confirmed that plastics monitoring using the spectral index was possible. The marine debris monitoring technique proposed in this study can be used to establish a plan for marine debris collection and treatment as well as to provide quantitative data on marine debris generation.

Drone Infrared Thermography Method for Leakage Inspection of Reservoir Embankment (드론 열화상활용 저수지 제체 누수탐사)

  • Lee, Joon Gu;Ryu, Yong Chul;Kim, Young Hwa;Choi, Won;Kim, Han Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.21-31
    • /
    • 2018
  • The result of examination of diagnostic method, which is composed of a combination of a thermal camera and a drone that visually shows the temperature of the object by detecting the infrared rays, for detecting the leakage of earth dam was driven in this research. The drone infrared thermography method was suggested to precise safety diagnosis through direct comparing the two method results of electrical resistivity survey and thermal image survey. The important advantage of the thermal leakage detection method was the simplicity of the application, the quickness of the results, and the effectiveness of the work in combination with the existing diagnosis method.

Study on Design of Two-Axis Image Stabilization Controller through Drone Flight Test Data Standardization

  • Jeongwon, Kim;Gyuchan, Lee;Dong-gi, Kwag
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.470-477
    • /
    • 2022
  • EOTS for drones is showing another aspect of market expansion in detection and recognition areas previously occupied by artificial satellites. The two-axis EOTS for drones controls the vibration or disturbance caused by the drone during the mission so that EOTS can accurately recognize the goal. Vibration generated by drones is transmitted to EOTS. Therefore, it is essential to develop a stabilization controller that attenuates vibrations transmitted from drones so that EOTS can maintain the viewing angle. Therefore, it is necessary to standardize drone disturbance and secure the performance of EOTS disturbance attenuation controller optimized for disturbance level through this. In this paper, a method of standardizing drone disturbance applied to EOTS is studied, through which EOTS controller simulation is performed and stabilization controller shape is selected and designed.

Implementation of Indoor Crack Monitoring System Using Drone Image (드론 영상분석 기술을 활용한 실내 골조 균열 모니터링 시스템 검증)

  • Nho, Hyunju;Lee, Giryun;Jung, Namcheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.261-262
    • /
    • 2023
  • Drone is a suitable equipment for capturing images of cracks at construction sites based on its efficient mobility and high-resolution image acquisition capabilities. In this study, drone was used to acquire indoor construction sites framework images and deep learning technology was applied to detect cracks and measure width, and size. Finally, the usability of the process was verified based on the indoor crack monitoring system.

  • PDF