• Title/Summary/Keyword: Driving-system design

Search Result 1,253, Processing Time 0.034 seconds

Direct Drive PM Motor Design for Next Generation Locomotive (차세대 전동차용 직구동형 영구자석 전동기 설계기술)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1860-1865
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM(Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. In this paper, the design of IPMSM satisfying driving specifications for the direct drive has been performed using the advanced F.E.M.

  • PDF

Design and Control of a MR Shock Absorber for Electronic Control Suspension (전자제어 현가장치를 위한 MR 쇽 업소버의 설계 및 제어)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • This paper presents design and control of a quarter-vehicle magneto-rheological (MR) suspension system for ECS (electronic control suspension). In order to achieve this goal, MR shock absorber is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR shock absorber, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR shock absorber is constructed in order to investigate the ride comfort and driving stability. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, the skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. In order to present control performance of MR shock absorber for ECS, ride comfort and driving stability characteristics such as vertical acceleration of sprung mass and tire deflection are experimentally evaluated under various road conditions and presented in both time and frequency domain.

Accurate Positioning with a Pneumatic Driving Apparatus (공기압 구동장치를 이용한 정밀위치제어)

  • Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.21-27
    • /
    • 2015
  • The accurate position control of pneumatic driving apparatus is considered in this paper. In pneumatically actuated positioning systems, accurate positioning as an electrical servo has been known to be difficult because of the friction force and compressibility of the air. For good control performance of the pneumatic system, an actuator mounted with externally pressurized air bearings is produced to compensate for friction force. For the controller design, the governing equation of the pneumatic driving apparatus is derived. In order to reduce the nonlinear characteristics of the control valve, linearized control input is derived from the relation between the effective area of the valve and the control input. The experimental results are presented to show the results of the improved position control of the pneumatic driving apparatus.

A Real-Time Graphic Driving Simulator Using Virtual Reality Technique (가상현실을 이용한 실시간 차량 그래픽 주행 시뮬레이터)

  • Jang, Jae-Won;Son, Kwon;Choi, Kyung-Hyun;Song, Nam-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.80-89
    • /
    • 2000
  • Driving simulators provide engineers with a power tool in the development and modification stages of vehicle models. One of the most important factors to realistic simulations is the fidelity obtained by a motion bed and a real-time visual image generation algorithm. Virtual reality technology has been widely used to enhance the fidelity of vehicle simulators. This paper develops the virtual environment for such visual system as head-mounted display for a vehicle driving simulator. Virtual vehicle and environment models are constructed using the object-oriented analysis and design approach. Based on the object model, a three-dimensional graphic model is completed with CAD tools such as Rhino and Pro/ENGINEER. For real-time image generation, the optimized IRIS Performer 3D graphics library is embedded with the multi-thread methodology. The developed software for a virtual driving simulator offers an effective interface to virtual reality devices.

  • PDF

The driving system design of walking robot which uses the automotive window motor (자동차용 윈도우 모터를 이용한 보행로봇 구동부 설계)

  • YOUM, K.W.;HAM, S.H.;OH, S.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.137-141
    • /
    • 2011
  • Driving mechanism, the central part of a robot, was designed in this study. Power for the motive drive was acquired by directly connecting the motor shaft in worm shape of the low-end DC motor, car window motor, to a decelerator. The decelerator consists of a worm gear to receive power from the motor shaft, a pinion gear to be connected in line with the worm gear, and an output shaft to be engaged to the pinion gear. Motion driving is achieved by the power from the motor shaft with the designed gears, transferred to the deceleration mechanism and to the output gear.

A Driving Mechanism of Outdoor Security Robots for High Speed Applications (고속 주행용 실외 경비로봇을 위한 구동 메커니즘)

  • Jeong, Hae-Kwan;Koh, Doo-Yeol;Woo, Chun-Kyu;Kwak, Yoon-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.163-168
    • /
    • 2009
  • In this paper, a new driving mechanism of security robotswhich should overcome obstacles with stability even though movingin high speed is introduced. The driving mechanism has spring-based suspension and two wheels positively necessary to overcome obstacles. From the driving mechanism, it is mainly discussed how we can decrease overshoot and impulse occurred when the robot is in the process of overcoming obstacles. Finally, design parameters of the driving mechanism which guarantees stable motion while overcoming obstacles is deduced based on simulation results. Experiments are also followed to demonstrate how well the manufactured system works in its early stage of the practical use.

  • PDF

Development and Evaluation of 3-Axis Gyro Sensor based Servo motion control (3-Axis Gyro Sensor based on Servo Motion Control 장치의 성능평가기준 및 시험규격개발)

  • Lee, WonBu;Chang, Chulsoon;Kim, JeongKuk;Park, Soohong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.627-630
    • /
    • 2009
  • The combination of the marine use various multi sensor surveillance system technology with the development of servo motion control algorithm and gyro sensor in six freedom motion is implemented to analyze the movement response. The stabilization of the motion control is developed and Nano driving Precision Pan-Tilt/Gimbal system is obtained from the security positioning cameras with ultra high speed device is used to carry out the exact behavior of the device. The exact behavior will be used to make a essential equipment. Finally the development of the Nano Driving Multi Sensor, Nano of Surveillance System Driving Precision Pan-Tilt/Gimbal optimal design and production, 3-aix Gyro Sensor based with Servo Motion Control algorithm development, Image trace video software and hardware tracking the development is organized and discuss in details. The development of the equipment and the system integration are fully experimented and verified.

  • PDF

Dynamic Analysis on Belt-Driven Spindle System of Machine Tools

  • Kim, Seong-Keol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.82-89
    • /
    • 2002
  • The need of ultra-precision machine tools, which manufacture and machine the high precision parts used in computers, semi-conductors and other precision machines, has been increased over years. Therefore it is important to design the driving parts, which affect significantly on their performances. In this paper, the dynamic analyses on the belt-driven system were explored. Relation of the acoustical natural frequency and the tension of belt was derived and presented through experiments. Also, while the dynamic loads on motor system were changed, dynamic deflections were calculated through finite element analysis. Nonlinear characteristics of the bearings having an effect on the dynamic performance were studied and the belt connecting the motor (driving part) to spindle of a machine tool (driven part) was modeled as truss and beam elements fur simulations under various conditions, and a beam element model was verified to be more useful.

Prediction of Postural Sagging Observed During Driving in Korean Male Drivers (한국인 남성 운전자의 운전 자세에서 발생하는 몸통 처짐 현상에 관한 예측 모델 연구)

  • Oh, Youngtaek;Jung, Eui S.;Park, Sungjoon;Jeong, Seong Wook
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • In the vehicle design, the research on driving posture has stood out as one of the important issues. Recently, the research on 3D human modeling focused on more exact implementation of real driving posture. However, prediction of driving posture through the 3D human modeling fail to reflect on the model the phenomenon called sagging, which refers to the retraction or shrinking of the torso while driving. 30 male subjects participated in the experiment where total subjects were divided into four groups according to height percentile(under 50%ile, 51%ile to 75%ile, 76%ile to 95%ile, over 95%ile). The independent variables were seat back angle(4 levels) and seat pan angle(2 levels). The dependent variable was capacity or the degree of retraction of the torso. First this study measured the sagging capacity by using a paired T-test between erect and retracted posture. Secondly it was tried to find out significant anthropometric variables that were statistically correlated by the analysis of correlation. Finally, a prediction model was derived which explains the capacity of sagging.

The Analysis of Energy Consumption for an Electric Vehicle under Various Driving Circumstance (준중형급 전기자동차의 주행특성에 따른 에너지 소모량 분석)

  • Lee, Dae-Heung;Seo, Ho-Won;Jeong, Jong-Ryeol;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-46
    • /
    • 2012
  • This paper discusses the energy consumption for a mid-size electric vehicle(EV) under various conditions. In order to analyze which driving style is more efficient in terms of the system of the EV, we develop the electric vehicle model and apply several types of speed profiles such as different steady speeds, acceleration/deceleration, and a real world driving cycle including the elevation profile obtained from a GPS device. The results show that the energy consumption of the EV is affected by the operating efficiency of components when driving at low speed, while it depends on required power at wheels when driving at high speed. Also this paper investigates the effect of the elevation of a road and the rate of electrical braking on the energy consumption as well as the fuel economy of a conventional vehicle model under the same conditions.