• 제목/요약/키워드: Driving simulation

검색결과 1,528건 처리시간 0.029초

PC 베이스의 실시간 차량 시뮬레이션 (PC-Based Real-Time Driving Simulation)

  • 조준희;최동찬;유승철;이운성
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2000년도 추계학술대회 논문집
    • /
    • pp.192-197
    • /
    • 2000
  • Real-time driving simulation is a comprehensive technology that can be applied effectively to vehicle and traffic safety improvement, by reproducing various driving conditions and situations realistically in a safe and controlled environment. This paper describes PC-based real-time driving simulation technology in terms of design factors and simulation components. It also introduces Kookmin University Driving Simulators developed based on these considerations, which have been applied effectively to ABS HILS and a human factor study concerning sudden acceleration accident reconstruction.

  • PDF

엔진 부분 부하 성능 및 변속기 시프트맵을 이용한 차량주행성능 컴퓨터 시뮬레이션 (A Computer Simulation of a Driving Vehicle Performance using an Set of Engine Part Load Performance and a Transmission Shift Map)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제19권2호
    • /
    • pp.64-68
    • /
    • 2014
  • A driving vehicle performance which is driven by FTP-75 mode was simulated by computer. Throttle valve position, engine speed, air mass flow rate, fuel consumption et al. were computer simulated. A set of engine part load performance data, automatic transmission shift map and vehicle specifications were used for the computer simulation. Throttle valve position, engine speed, air mass flow rate et al. measured for evaluating the computer simulation results by driving the vehicle with FTP-75 mode on a chassis dynamometer. GT-Power$^{(R)}$ software was used for the computer simulation of the driving vehicle performance. Experimental fuel consumption rate was measured by using an ECU HILS fuel injection system. The experimental data and simulation results were compared. The computer simulation of the driving vehicle performance predicts the measured data well comparatively.

경사가 포함된 도로의 주행시 실제 주행연비 예측 (Estimation of Real Driving Fuel Consumption Rate of a Vehicle When Driving on Road Including Grade)

  • 박진호;박영일;이장무
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.65-76
    • /
    • 2000
  • To measure the fuel consumption rate of a vehicle, a car is tested on chassis dynamometer following given driving mode. But the fuel consumption rate measured by this method may be somewhat different from that measured in on-road driving conditions. It may be due to not considering road grade in driving modes. In this study, new driving modes which include road grade are proposed, and the simulation program to estimate the real driving fuel consumption rate of a vehicle is developed. On-road car tests to verify the simulation program are carried out and the results of the simulation are analysed and compared with those of the experiments.

  • PDF

전기자동차 및 내연기관 자동차의 최대 주행 거리 비교 분석 (Comparative Analysis of Maximum Driving Range of Electric Vehicle and Internal Combustion Engine Vehicle)

  • 김정민
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.105-112
    • /
    • 2013
  • In this paper, EV (Electric Vehicle) and ICE (Internal Combustion Engine) vehicle simulators are developed to compare maximum driving range of EV and ICE vehicle according to different driving patterns. And, simulations are performed for fourteen constant velocity cases (20, 30, 40, ${\ldots}$, 150 km/h) and four different driving cycles. From the simulation results of constant velocity, it is found that the decreasing rate of maximum driving range for EV is larger than the one for ICE as both the vehicle velocity and the driving power increase. It is because the battery efficiency of EV decreases as both the velocity and the driving power increase, whereas the engine and transmission efficiencies of ICE vehicle increase. From the results of four driving cycle simulation, the maximum driving range of EV is shown to decrease by 50% if the average driving power of driving cycle increases from 10 to 20kW. It is because the battery efficiency decreases as the driving power increases. In contrast, the maximum driving range of ICE vehicle also increases as the average driving power of driving cycle increases. It is because the engine and transmission efficiencies also increase as the driving power increases.

고속도로에서의 자율주행 알고리즘 개발 및 평가를 위한 다차량 시뮬레이션 환경 개발 (Multi-Vehicle Environment Simulation Tool to Develop and Evaluate Automated Driving Systems in Motorway)

  • 이호준;정용환;민경찬;이명수;신재곤;이경수
    • 자동차안전학회지
    • /
    • 제8권4호
    • /
    • pp.31-37
    • /
    • 2016
  • Since real road experiments have many restrictions, a multi-vehicle traffic simulator can be an effective tool to develop and evaluate fully automated driving systems. This paper presents multi-vehicle environment simulation tool to develop and evaluate motorway automated driving systems. The proposed simulation tool consists of following two main parts: surrounding vehicle model and environment sensor model. The surrounding vehicle model is designed to quickly generate rational complex traffic situations of motorway. The environment sensor model depicts uncertainty of environment sensor. As a result, various traffic situations with uncertainty of environment sensor can be proposed by the multi-vehicle environment simulation tool. An application to automated driving system has been conducted. A lane changing algorithm is evaluated by performance indexes from the multi-vehicle environment simulation tool.

ROS 기반 자율주행 알고리즘 성능 검증을 위한 시뮬레이션 환경 개발 (Development of Simulation Environment for Autonomous Driving Algorithm Validation based on ROS)

  • 곽지섭;이경수
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.20-25
    • /
    • 2022
  • This paper presents a development of simulation environment for validation of autonomous driving (AD) algorithm based on Robot Operating System (ROS). ROS is one of the commonly-used frameworks utilized to control autonomous vehicles. For the evaluation of AD algorithm, a 3D autonomous driving simulator has been developed based on LGSVL. Two additional sensors are implemented in the simulation vehicle. First, Lidar sensor is mounted on the ego vehicle for real-time driving environment perception. Second, GPS sensor is equipped to estimate ego vehicle's position. With the vehicle sensor configuration in the simulation, the AD algorithm can predict the local environment and determine control commands with motion planning. The simulation environment has been evaluated with lane changing and keeping scenarios. The simulation results show that the proposed 3D simulator can successfully imitate the operation of a real-world vehicle.

시뮬레이션 기반 자체 구동 롤러 컨베이어 물류시스템의 전력 효율 분석 (Simulation-based Analysis of Electric Power Consumption Efficiency for Self-Driving Roller Conveyor Systems)

  • 김영주;박희남;함원경;박상철
    • 한국시뮬레이션학회논문지
    • /
    • 제24권3호
    • /
    • pp.97-105
    • /
    • 2015
  • 본 논문은 시뮬레이션을 기반으로 자체 구동 롤러 컨베이어 물류시스템의 전력 효율을 분석하는 연구이다. 물류 시스템의 전력 효율 향상은 온실 가스 배출과 물류 비용을 감소시키는 이점을 가져온다. 자체 구동 롤러 컨베이어는 제품이 접근할 때에만 구동이 된다. 따라서 자체 구동 롤러 컨베이어 기반 시스템은 연속 구동 롤러 컨베이어 시스템에 비해 더 적은 전력을 소비한다. 본 논문에서는 DEVS(이산 사건 기반 시스템) 기반의 시뮬레이션 시스템을 설계하고 자체 구동 롤러와 연속 구동 롤러컨베이어 모델을 구축하였다. 설계된 시뮬레이션시스템과 컨베이어 모델의 검증과 확인을 위해 우리는 실험 환경에 대응하는 물류 모델을 모델링하고 모델과 실제 시스템간의 비교를 하였다. 본 연구의 주된 목적은 시뮬레이션 방법을 사용하여 자체구동 롤러 컨베이어 기반 물류 시스템의 전력 소비의 이점을 설명하는 것이다.

A Symbolic Computation Method for Automatic Generation of a Full Vehicle Model Simulation Code for a Driving Simulator

  • Lee Ji-Young;Lee Woon-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.395-402
    • /
    • 2005
  • This paper deals with modeling and computer simulation of a full multibody vehicle model for a driving simulator. The multibody vehicle model is based on the recursive formulation and a corresponding simulation code is generated automatically from AUTOCODE, which is a symbolic computation package developed by the authors using MAPLE. The paper describes a procedure for automatically generating a highly efficient simulation code for the full vehicle model, while incorporating realistically modeled components. The following issues have been accounted for in the procedure, including software design for representing a mechanical system in symbolic form as a set of computer data objects, a multibody formulation for systems with various types of connections between bodies, automatic manipulation of symbolic expressions in the multibody formulation, interface design for allowing users to describe unconventional force-and torque-producing components, and a method for accommodating external computer subroutines that may have already been developed. The effectiveness and efficiency of the proposed method have been demonstrated by the simulation code developed and implemented for driving simulation.

Driving Performance Analysis of the Adaptive Cruise Controlled Vehicle with a Virtual Reality Simulation System

  • Kwon Seong-Jin;Chun Jee-Hoon;Jang Suk;Suh Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.29-41
    • /
    • 2006
  • Nowadays, with the advancement of computers, computer simulation linked with VR (Virtual Reality) technology has become a useful method for designing the automotive driving system. In this paper, the VR simulation system was developed to investigate the driving performances of the ASV (Advanced Safety Vehicle) equipped with an ACC (Adaptive Cruise Control) system. For this purpose, VR environment which generates visual and sound information of the vehicle, road, facilities, and terrain was organized for the realistic driving situation. Mathematical models of vehicle dynamic analysis, which includes the ACC algorithm, have been constructed for computer simulation. The ACC algorithm modulates the throttle and the brake functions of vehicles to regulate their speeds so that the vehicles can keep proper spacing. Also, the real-time simulation algorithm synchronizes vehicle dynamics simulation with VR rendering. With the developed VR simulation system, several scenarios are applied to evaluate the adaptive cruise controlled vehicle for various driving situations.

전동열차 주행결과와 시뮬레이션 분석을 통한 최적주행 연구 (A Study on the Optimal Driving by Analysis on EMU Running Result and Simulation)

  • 김치태;김동환;한성호
    • 전기학회논문지P
    • /
    • 제61권3호
    • /
    • pp.129-133
    • /
    • 2012
  • As people are getting concerned to Environment recently, researches on the environmentally-friendly and effective railway system have been conducted in every aspects. Especially as it became known that the pattern of train driving causes the difference in energy consumption, the researches on the train driving to minimize the energy consumption are gaining a lot of interest. The main study showed the optimal driving to minimize energy consumption while driving after analyzing real driving data measured by EMU of Bundang-line real driving, determining the impact on energy consumption due to train driving pattern changes, executing a variety of simulation on real driving patterns by Matlab Simulink and finally driving between stations by given driving times.