• 제목/요약/키워드: Driving environments

Search Result 317, Processing Time 0.028 seconds

Localization of Mobile Users with the Improved Kalman Filter Algorithm using Smart Traffic Lights in Self-driving Environments

  • Jung, Ju-Ho;Song, Jung-Eun;Ahn, Jun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.67-72
    • /
    • 2019
  • The self-driving cars identify appropriate navigation paths and obstacles to arrive at their destinations without human control. The autonomous cars are capable of sensing driving environments to improve driver and pedestrian safety by sharing with neighbor traffic infrastructure. In this paper, we have focused on pedestrian protection and have designed an improved localization algorithm to track mobile users on roads by interacting with smart traffic lights in vehicle environments. We developed smart traffic lights with the RSSI sensor and built the proposed method by improving the Kalman filter algorithm to localize mobile users accurately. We successfully evaluated the proposed algorithm to improve the mobile user localization with deployed five smart traffic lights.

Study on Map Building Performance Using OSM in Virtual Environment for Application to Self-Driving Vehicle (가상환경에서 OSM을 활용한 자율주행 실증 맵 성능 연구)

  • MinHyeok Baek;Jinu Pahk;JungSeok Shim;SeongJeong Park;YongSeob Lim;GyeungHo Choi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2023
  • In recent years, automated vehicles have garnered attention in the multidisciplinary research field, promising increased safety on the road and new opportunities for passengers. High-Definition (HD) maps have been in development for many years as they offer roadmaps with inch-perfect accuracy and high environmental fidelity, containing precise information about pedestrian crossings, traffic lights/signs, barriers, and more. Demonstrating autonomous driving requires verification of driving on actual roads, but this can be challenging, time-consuming, and costly. To overcome these obstacles, creating HD maps of real roads in a simulation and conducting virtual driving has become an alternative solution. However, existing HD maps using high-precision data are expensive and time-consuming to build, which limits their verification in various environments and on different roads. Thus, it is challenging to demonstrate autonomous driving on anything other than extremely limited roads and environments. In this paper, we propose a new and simple method for implementing HD maps that are more accessible for autonomous driving demonstrations. Our HD map combines the CARLA simulator and OpenStreetMap (OSM) data, which are both open-source, allowing for the creation of HD maps containing high-accuracy road information globally with minimal dependence. Our results show that our easily accessible HD map has an accuracy of 98.28% for longitudinal length on straight roads and 98.42% on curved roads. Moreover, the accuracy for the lateral direction for the road width represented 100% compared to the manual method reflected with the exact road data. The proposed method can contribute to the advancement of autonomous driving and enable its demonstration in diverse environments and on various roads.

Hybrid Control Strategy for Autonomous Driving System using HD Map Information (정밀 도로지도 정보를 활용한 자율주행 하이브리드 제어 전략)

  • Yu, Dongyeon;Kim, Donggyu;Choi, Hoseung;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.80-86
    • /
    • 2020
  • Autonomous driving is one of the most important new technologies of our time; it has benefits in terms of safety, the environment, and economic issues. Path following algorithms, such as automated lane keeping systems (ALKSs), are key level 3 or higher functions of autonomous driving. Pure-Pursuit and Stanley controllers are widely used because of their good path tracking performance and simplicity. However, with the Pure-Pursuit controller, corner cutting behavior occurs on curved roads, and the Stanley controller has a risk of divergence depending on the response of the steering system. In this study, we use the advantages of each controller to propose a hybrid control strategy that can be stably applied to complex driving environments. The weight of each controller is determined from the global and local curvature indexes calculated from HD map information and the current driving speed. Our experimental results demonstrate the ability of the hybrid controller, which had a cross-track error of under 0.1 m in a virtual environment that simulates K-City, with complex driving environments such as urban areas, community roads, and high-speed driving roads.

Comparison of Speech Intelligibility & Performance of Speech Recognition in Real Driving Environments (자동차 주행 환경에서의 음성 전달 명료도와 음성 인식 성능 비교)

  • Lee Kwang-Hyun;Choi Dae-Lim;Kim Young-Il;Kim Bong-Wan;Lee Yong-Ju
    • MALSORI
    • /
    • no.50
    • /
    • pp.99-110
    • /
    • 2004
  • The normal transmission characteristics of sound are hardly obtained due to the various noises and structural factors in a running car environment. It is due to the channel distortion of the original source sound recorded by microphones, and it seriously degrades the performance of the speech recognition in real driving environments. In this paper we analyze the degree of intelligibility under the various sound distortion environments by channels according to driving speed with respect to speech transmission index(STI) and compare the STI with rates of speech recognition. We examine the correlation between measures of intelligibility depending on sound pick-up patterns and performance in speech recognition. Thereby we consider the optimal location of a microphone in single channel environment. In experimentation we find that high correlation is obtained between STI and rates of speech recognition.

  • PDF

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

Attention-LSTM based Lane Change Possibility Decision Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 어텐션-장단기 기억 신경망 기반 차선 변경 가능성 판단 알고리즘 개발)

  • Lee, Heeseong;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.65-70
    • /
    • 2022
  • Lane change in urban environments is a challenge for both human-driving and automated driving due to their complexity and non-linearity. With the recent development of deep-learning, the use of the RNN network, which uses time series data, has become the mainstream in this field. Many researches using RNN show high accuracy in highway environments, but still do not for urban environments where the surrounding situation is complex and rapidly changing. Therefore, this paper proposes a lane change possibility decision network by adopting Attention layer, which is an SOTA in the field of seq2seq. By weighting each time step within a given time horizon, the context of the road situation is more human-like. A total 7D vectors of x, y distances and longitudinal relative speed of side front and rear vehicles, and longitudinal speed of ego vehicle were used as input. A total 5,614 expert data of 4,098 yield cases and 1,516 non-yield cases were used for training, and the performance of this network was tested through 1,817 data. Our network achieves 99.641% of test accuracy, which is about 4% higher than a network using only LSTM in an urban environment. Furthermore, it shows robust behavior to false-positive or true-negative objects.

Noise Removal of FMCW Scanning Radar for Single Sensor Performance Improvement in Autonomous Driving (자율 주행에서 단일 센서 성능 향상을 위한 FMCW 스캐닝 레이더 노이즈 제거)

  • Wooseong Yang;Myung-Hwan Jeon;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.271-280
    • /
    • 2023
  • FMCW (Frequency Modulated Continuous Wave) radar system is widely used in autonomous driving and navigation applications due to its high detection capabilities independent of weather conditions and environments. However, radar signals can be easily contaminated by various noises such as speckle noise, receiver saturation, and multipath reflection, which can worsen sensing performance. To handle this problem, we propose a learning-free noise removal technique for radar to enhance detection performance. The proposed method leverages adaptive thresholding to remove speckle noise and receiver saturation, and wavelet transform to detect multipath reflection. After noise removal, the radar image is reconstructed with the geometric structure of the surrounding environments. We verify that our method effectively eliminated noise and can be applied to autonomous driving by improving the accuracy of odometry and place recognition.

Development of Advanced FMTC Virtual Driving Environment for Autonomous Driving System Development (자율주행시스템 개발을 위한 FMTC 가상주행환경 고도화 개발)

  • Beenhui, Lee;Kwanhoe, Huh;Hyojin, Lee;Jangu, Lee;Jongmin, Yoon;Seongwoo, Cho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.60-69
    • /
    • 2022
  • Recently, the importance of simulation validation in a virtual environment for autonomous driving system validation is increasing. At the same time, interest in the advancement of the virtual driving environment is also increasing. To develop autonomous driving technology, a simulation environment similar to the real-world environment is needed. For this reason, not only the road model is configured in the virtual driving environment, but also the driving environment configuration that includes the surrounding environments -traffic, object, etc- is necessary. In this article, FMTC, which is a test bed for autonomous vehicles, is implemented in a virtual environment and advanced to form a virtual driving environment similar to that of real FMTC. In addition, the similarity of the virtual driving environment is verified through comparative analysis with the real FMTC.

Lane Change Behavior of Manual Vehicles in Automated Vehicle Platooning Environments (군집주행 환경에서 비자율차의 차로변경행태 분석)

  • LEE, Seol Young;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.332-347
    • /
    • 2017
  • Analysis of the interaction between the automated vehicles and manual vehicles is very important in analyzing the performance of automated cooperative driving environments. In particular, the automated vehicle platooning can affect the driving behavior of adjacent manual vehicles. The purpose of this study is to analyze the lane change behavior of the manual vehicles in automated vehicle platonning environment and to conduct the experiment and questionnaire surveys in three stages. In the first stage, a video questionnaire survey was conducted, and responsive behaviors of manual vehicles were investigated. In second stage, the driving simulator experiments were conducted to investigate the lane change behaviors of in automated vehicle platonning environments. To analyze the lane change behavior of the manual vehicles, lane change durations and acceleration noise, which are indicators of traffic flow stability, were used. The driving behavior of manual vehicles were compared across different market penetration rates (MPR) of automated vehicles and human factors. Lastly, NASA-TLX (NASA Task Load Index) was used to evaluate the workload of the manual vehicle drivers. As a result of the analysis, it was identified that manual vehicle drivers had psychological burdens while driving in automated vehicle platonning environments. Lane change durations were longer when the MPR of the automated vehicles increased, and acceleration noise were increased in the case of 30-40 years old or female drivers. The results from this study can be used as a fundamental for more realistic traffic simulations reflecting the interaction between the automated vehicles and manual vehicles. It is also expected to effectively support the establishment of valuable transportation management strategy in automated vehicle environments.

A Controller Design and Performance Evaluation for 6 DOF Driving Simulator (6자유도 주행 시뮬레이터 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper Vehicle driving simulator have been used in the development and modification of models. A real-time simulation system and washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. An interesting question, "how the 6 DOF Driving Simulator can be controlled optimally for the various tasks?" is not easy to be answered. This paper presents the hardware and software developed for a driving simulator of construction vehicle. A simulator can reduce cost and time a variety of driving simulations in the laboratory. Using its 6 DOF Simulator can move in various modes, and perform dexterous tasks. Driving simulators have begun to proliferate in the automotive industry and the associated research community. This effort involves the real-time dynamic of wheel-type excavator the design and manufacturing of the Stewart platform an integrated control system of the platform and three-dimensional graphic modeling of the driving environments.