• Title/Summary/Keyword: Driving energy

Search Result 973, Processing Time 0.187 seconds

Study on High-Efficiency Driving of a Piezo Device Using Voltage Inversion Circuit (전압 극성 전환을 통한 피에조 소자의 에너지 회수형 구동 기법 연구)

  • Park, Han-Bin;Park, Jin-Ho;Hong, Sun-Ki;Kang, Taesam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1843-1847
    • /
    • 2012
  • Piezo devices have large power density and simple structure. They can generate larger force than the conventional actuators. It has also wide bandwidth with fast response in a compact size. Thus the piezo devices are expected to be used widely in the future for small actuators with fast response time and large actuating force. However, the piezo actuators need high voltage with high driving current due to their large capacitive property. In this paper, we propose a simple method to drive piezo devices using voltage inversion circuit with coil inductance. Experiments with real circuit demonstrates that the proposed scheme can improve the energy efficiency very much.

EV battery's real-time driving data acquisition and comparison by route (전기차 배터리의 실시간 주행 데이터 취득과 주행경로별 비교)

  • Yang, Seungmoo;Kim, Eel-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.489-490
    • /
    • 2018
  • As the number of electric vehicles (EV) increases, there is an increasing interest in the post-vehicle application of the EV batteries. For the second use application of EV batteries, the state of health (SOH) at the end of automotive service has to be evaluated differently from the automotive perspective. It will be helpful to consider the driving conditions of EVs in understanding the performance deterioration trend of the battery. In this paper, we acquired the battery status information in real time during driving and compared the characteristics by the driving routes. The SOH from the BMS can be rescaled to percentage ratio to give a more general idea about the performance degradation.

  • PDF

Improvement of the Sustain-driving Characteristics of AC PDP by Changing the Position of the Inductor

  • Choi, Jeong-Pil;Park, Sang-Hyun;Jung, Woo-Chang;Cho, Kyu-Choon;Moon, Seong-Hak
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.45-49
    • /
    • 2008
  • The characteristics of the sustain-driving circuit were examined in this paper. The sustain-driving circuit is in charge of the most important part of PDP driving because it manages most of the power consumption in the PDP. A couple of gatedriving circuits for the sustain-driving circuit were introduced in this paper, and a new driving circuit was also proposed. This new circuit is more cost-effective and has a simpler PCB layout compared to the conventional one. Some additional driving advantages were noted as well.

Current-Controlled Driving Method for AC PDP and Experimental Characterization

  • Kim, Joon-Yub;Lim, Jong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.253-257
    • /
    • 2002
  • A new Current-Controlled Driving Method that can drive AC PDPs with low voltage and high luminous efficiency for the sustaining period is presented. In this driving method, the voltage source is connected to a storage capacitor and the stored voltage is delivered to the panel through LC resonance. Thus, this driving method can drive the panel with a voltage source as low as about half of the voltage necessary in the conventional driving methods. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146V and that high luminous efficiency of 1.33 1m/W can be achieved.

A New Sustain Driving Method for AC PDP : Charge-Controlled Driving Method

  • Kim, Joon-Yub
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.292-296
    • /
    • 2002
  • A new sustain driving method for the AC PDP is presented. In this driving method, the voltage source is connected to a storage capacitor, this storage capacitor charges an intermediate capacitor through LC resonance, and the panel is charged from the intermediate capacitor indirectly. In this way, the current flowing into the AC PDP when the sustain discharge occurs is reduced because the current is indirectly supplied from a capacitor, a limited source of charge. Thus, the input power to the output luminance efficiency is improved. Since the voltage supplied to the storage capacitor is doubled through LC resonance, this method call drive an AC PDP with a voltage source of about half of the voltage necessary in the conventional driving methods. The experiments showed that this charge-controlled driving method could drive ail AC PDP with a voltage source of as low as 107V. Using a panel of the conventional structure, luminous efficiency of 1.28 lm/W was achieved.

Analysis on driving pattern of railway electric train for the energy efficiency (철도 전기차의 에너지효율화를 위한 패턴 분석)

  • Kim, Kang-Wheo;Han, Moon-Seob;Chang, Sang-Hoon;Jeong, Woo-Sung;Kang, Moon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1165_1166
    • /
    • 2009
  • In recent years, energy prices have soared, which of course have increased costs for railway operators. Simultaneously, the energy market has considerably changed that in most developed countries, it is deregulated, giving railway operators an opportunity to define new ways of using energy. Efficient operation of the railway system is considered as an essential way to energy saving while an efficient management of power level helps to lower the reference subscribed power, giving access to better energy rates. It is studied on the relation between time and force for the energy efficient driving of train in railway when the train is braking according to several slips.

  • PDF

Comparative Study on Difference in Driver's Workload between Driving Simulator and Field Driving in Tunnel, Highway (드라이빙 시뮬레이터 주행과 현장주행시 운전자 반응 비교 연구)

  • Kim, Hyun Jin;Kim, Ju Young;Choi, Gyeong Im;Ju, Che Hong;OH, Cheol
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.139-145
    • /
    • 2017
  • PURPOSES : This study analyzed the difference in a driver's workload between using a driving simulator and field driving in tunnel, highway. METHODS : Based on the literature review, it was found that a driver's workload could be quantified using biosignals. This study analyzed the biosignal data of 30 participants using data collected while they were using a driving simulator and during a field test involving tunnel driving. Relative energy parameter was used for biosignal analysis. RESULTS : The driver's workload was different between the driving simulator and field driving in tunnels, highway. Compared with the driving simulator test, the driver's workload exhibited high value in field driving. This result was significant at the 0.05 level. The same result was observed before the tunnel entrance section and 200 m after the entrance section. CONCLUSIONS : This study demonstrates the driving simulator effect that drivers feel safer and more comfortable using a driving simulator than during a field test. Future studies should be designed considering the result of this study, age, type of simulator, study site and so on.

A Study on Characteristics and Driving Techniques of Energy Recovery Type Inverter for Piezo Actuator Drive (피에조 액츄에이터 구동용 에너지 회수형 인버터의 특성과 구동 기법 연구)

  • Hong, Sun-Ki;Lee, Jung-Seop;Byeon, Nam-Hee;Na, Yoo-Cheong;Kang, Tae-Sam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1095-1100
    • /
    • 2013
  • Piezo devices have large power density and simple structure compared with conventional electrical motors. Thus they can generate larger forces than the conventional actuators with small size. Their resopnses to commands are also very fast and thus the bandwidths are very wide. Thus the piezo devices are expected to be used widely in the future for actuating devices requiring fast response and large actuating force with small size. However, the piezo actuators need high voltage with high driving current due to their large capacitive property. In this paper, proposed is a simple method to drive piezo devices using voltage inversion circuit with coli inductance. The coil inductance carries the charges in the piezo device to the opposite side, inverting the polarity of the applied voltage, thus saving the power to drive the device with AC voltages. Experiments with real circuit demonstrates that the proposed scheme can improve the energy efficiency very much.

A Study on the Analysis Method of Emission Intensity of GHGs utilizing Real World Vehicle Driving Information (실차 운행정보를 활용한 온실가스 배출지표 분석 방법에 대한 연구)

  • Kim, Yong Beom;Kim, Pil Su;Han, Yong Hee;Lee, Heon Ju;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.19-29
    • /
    • 2016
  • In this study, the emission intensity calculation method of GHGs was developed by considering the characteristics of the models and time series. The telematics device was installed on the car (OBD-II) to collect information on the operation conditions from each sample vehicle of public authorities. Based on emission intensity of GHGs, it presented a methodology of quantitative comparison of GHGs emission by vehicles. Collected driving information of vehicle was used for operating characteristics analysis of the target vehicle, and it was confirmed different operating characteristics through comparison of the results and previous study. GHGs emission intensity were analyzed considering characteristics of vehicle type by passenger car, van, cargo, and considering characteristics of the time series by summer, winter, and intermediate. From the analysis result, it was calculated GHGs emission intensity based on mileage ($g\;CO_2\;eq./km$) and operating time ($g\;CO_2\;eq./sec$).

Measurement and Analysis Energy Consumption of Tilting Train Express (한국형 틸팅열차의 소비전력 측정 및 분석)

  • Huh, Jae-Sun;Kang, Chul;Lim, Jae-Chan;Kim, Jae-Chul;Lee, Su-Gil;Han, Seoung-Ho;Lee, Eun-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.157_158
    • /
    • 2009
  • Recently, the growth of electric railway technology steadily keep up in the korea, and occupancy rate of electric railway system increased as a transportation method so energy consumption of railway system is increasing. According to this reason, the many studys of energy consumption in the railway system are in progress. In this context, the TTX(Tilting Train eXpress) needs to measure and analyze energy consumption and regenerative energy. In this paper, because of driving of TTX in the Ho-Nam railroad and Jung-Ang railroad, consumpted and regenerated energy are measured. This measured data is classified and analyzed as driving mode.

  • PDF