• 제목/요약/키워드: Driving energy

검색결과 975건 처리시간 0.029초

A Study of a Simple PDP Driver Architecture using the Transformer Network

  • Kim, Woo-Sup;Shin, Jong-Won;Chae, Su-Yong;Hyun, Byung-Chul;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.148-155
    • /
    • 2008
  • In this paper, a cost-effective PDP driving circuit using the transformer network is proposed. Compared with the previous works, the half-bridge type energy recovery circuit recovers the reactive energy not to the capacitor but to the source. A single sustain board architecture removes the blocking switches which are placed on the discharge path in parallel, thus reducing the number of devices. A simple reset circuit generates the same waveforms as the previous approaches. The circuit configuration and modified driving waveforms are compared with the previous works. The validity of the proposed simplified driver is verified through tests using a 6-inch panel.

노선버스용 구동모터 시스템의 성능평가 (Assessment of Performance of Motor System for City Bus)

  • 이윤기;명광재
    • 대한기계학회논문집B
    • /
    • 제35권2호
    • /
    • pp.189-196
    • /
    • 2011
  • 최근, 승용차는 물론 대형차에서도 하이브리드시스템 등의 전기동력방식을 도입하려는 연구개발이 활발하다. 기존의 내연기관을 대체하는 전기구동모터를 이용하여 차량을 구동하는 전기동력방식을 채용하는 것이 한층 더 효율적이며 가속성능, 승차감 등의 면에서도 유리한 점이 많다. 그러나 모터는 엔진과 전혀 다른 특징을 갖기 때문에 동력성능과 에너지효율에 관한 적합한 평가수법을 검토할 필요가 있다. 본 논문에서는 전기구동버스에 대한 구동모터 시스템을 다이나모미터 상에서 운전하여, 노선버스의 운행패턴을 반영한 모의운전을 실시, 가속성능 및 에너지변환효율, 회생효과의 평가방법 등을 고찰하였다. 그 결과 실 주행 패턴운전에 대한 모터일률, 전력량 등의 계측으로부터 모터 변환효율은 90% 전후, 회생전력량은 요구전력량의 40% 이상으로 평가되었다.

IOT 기반의 전기 자전거 제어 시스템 개발 (Development of a Control System for E-Bike Based on IOT)

  • 박종진;조범동
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.150-157
    • /
    • 2016
  • In this paper, a control system for E-bike based on IOT was developed, which collects and monitors information of states of E-bike and surrounding environments from several sensors and control devices in E-bike, and informs the possible dangers to rider when riding the E-bike. Developed electronic control system can manage battery efficiently, obtain battery's remaining power in real-time and provide possible riding distance to rider. It makes possible for rider to schedule near optimal riding route in terms of battery usage and respond quickly to battery discharge. Results of applying developed system to E-bike show that according to driving-mode, possible driving distance can be calculated efficiently and using user application App, real-time driver position marking and driving route searching functions lead to energy efficient E-bike driving. Later we will endeavor to integrate BMS, ECU, smart-phone and PC(server) to provide stable driving system based on various driving information of E-bike.

도시운전모드 하에서 HEV 배터리 충.방전 전략 분석에 대한 연구 (A study of charge and discharge strategy analysis on HEV battery under urban dynamometer driving schedule)

  • 김성곤;정기윤;양인범;김덕진;이춘범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.247-249
    • /
    • 2007
  • Urban dynamometer driving schedule(FTP-75 mode) plays very significant role on automotive emission test, due to reference point. The overall system energy efficiency of a HEV(Hybrid Electric Vehicle) is highly dependent on the energy management strategy employed. An energy source is the heart of a HEV. In order to applicable to a vehicle component, it must be need to real world test result. But, the present state of things have numerous problems. In this paper, be studied performed based on HEV simulation software in virtual world and chassis dynamometer test in real world and the result make a comparative. Toyota Prius vehicle was adapted as a modeling and real testing to evaluate the hybrid components and energy balancing management. The point at issue is voltage and current analysis for HEV battery SOC(State of Charge), and verification for energy.

  • PDF

물받이를 이용한 유수발전장치의 설계 및 구현 (Design and Implementation of Fluid Flow Generation System by using Water Captures)

  • 손영대;정현석
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.413-421
    • /
    • 2012
  • This paper proposes the design and implementation of fluid flow generation system by using polypropylene(PP) water capture, which harvests electric energy from the kinetic energy of tidal current or water flow and drives the desired load, and applies it to the discharge drain of Hadong thermal power plant. This experimental system is composed of water captures, driving wheel, gear trains, 10[kW] synchronous generator, and three phase rectifying circuit which drives lamp load for test. The proposed water capturing system which is composed of water captures, rope and driving wheel, rotates as caterpillar according to water flow. This system is very easy to manufacture and more economical than another type of tidal current turbines such as conventional propeller and helical type. Also, we estimated the available fluid flow energy that can be extracted from the cooling water in discharge drain based on drain's cross-sectional area. Therefore, this paper confirms the validity of proposed fluid flow generation system with water captures and the possibility of its application for renewable energy generation in discharge drain of thermal power plant, from the obtained performance characteristic of this energy conversion system.

액정 기반 스마트 윈도우용 셀의 특성 연구 (A Study on Characteristics of Liquid-Crystal Based Cell for Smart Window)

  • 박병규;김순금;이승우;소순열;이진
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.271-275
    • /
    • 2020
  • Smart windows are used as windows and doors to determine the cooling and heating efficiency of a building. They have characteristics that can increase the energy efficiency of a building, which leads to energy savings. In addition, smart windows can control the amount of light transmitted from the external environment of a building to the interior of a building according to the needs of the user. In this study, a 297×210 ㎟ liquid crystal cell capable of controlling light transmittance was fabricated using a liquid crystal device as an optical shutter. The effect of driving voltage on the transmittance and the effect of the thermal environment on the driving stability were analyzed. We confirmed the applicability of using smart windows as exterior building materials.

유압 구동식 이족 로봇의 구동을 위한 탑재식 유압 파워 유닛의 에너지 효율적 제어 (Energy Efficient Control of Onboard Hydraulic Power Unit for Hydraulic Bipedal Robots)

  • 조부연;김성우;신승훈;김민수;오준호;박해원
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.86-93
    • /
    • 2021
  • This paper proposes a controller to regulate the supply pressure of the hydraulic power unit (HPU) for driving a bipedal robot. We establish flow rate models for charging accumulator, actuating joints and leaking from actuators and spool valves. This determines the pump driving motor speed to satisfy the demanded flow rate for operating the bipedal robot without the energy loss caused by the bypass through a pressure regulating valve. We apply proposed controller to an onboard HPU mounted on top of bipedal robot platform with twelve degrees of freedom. We implement air-walking motion and squat motion which require variable flow rate to the bipedal robot. Through this experiment, the energy efficiency of proposed controller was verified by comparing the electric energy consumed when the controller was applied and when the pump operated at constant speed. We also shows the capability of the HPU's control performance to regulate supply pressure.

BMS용 능동밸런싱 회로 소자 구동용 게이트 구동 칩 설계 (Design of a gate driver driving active balancing circuit for BMSs.)

  • 김영희;김홍주;하윤규;하판봉;백주원
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권6호
    • /
    • pp.732-741
    • /
    • 2018
  • 여러 배터리 셀을 직렬로 연결해서 사용하는 BMS에서 사용 가능 용량을 최대화시키기 위하여 각 셀의 전압을 같도록 맞춰주는 셀 밸런싱 기술이 필요하다. 다중 권선 변압기를 사용하는 능동 셀 밸런싱 회로에서 셀 간 직접적 (direct cell-to-cell)으로 에너지를 전달하는 밸런싱 회로는 PMOS 스위치와 NMOS 스위치를 구동하기 위한 게이트 구동 칩은 PMOS 스위치와 NMOS 스위치 개수 만큼 TLP2748 포토커플러(photocoupler)와 TLP2745 포토커플러가 필요하므로 원가가 증가하고 집적도가 떨어진다. 그래서 본 논문에서는 포토커플러를 사용하여 PMOS와 NMOS 스위칭소자를 구동하는 대신 70V BCD 공정기반의 PMOS 게이트 구동회로와 NMOS 게이트 구동회로, 스위칭 시간이 개선된 PMOS 게이트 구동회로와 NMOS 게이트 구동회로를 제안하였다. 스위칭 시간이 개선된 PMOS 게이트 구동 스위치의 ${\Delta}t$는 8.9ns이고, NMOS 게이트 구동 스위치의 ${\Delta}t$는 9.9ns로 양호한 결과를 얻었다.