• Title/Summary/Keyword: Driving device

Search Result 907, Processing Time 0.025 seconds

Assessment of discomfort in elbow motion from driver posture (운전자 자세에 따른 팔꿈치 동작의 불편도 평가)

  • Tak, Tae-Oh;Lee, Pyoung-Rim
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.265-272
    • /
    • 2001
  • The human arm is modeled by three rigid bodies(the upper arm, the forearm and the hand)with seven degree of freedom(three in the shoulder, two in the elbow and two in the wrist). The objective of this work is to present a method to determine the three-dimensional kinematics of the human elbow joint using a magnetic tracking device. Euler angle were used to determine the elbow flexion-extension, and the pronation-supination. The elbow motion for the various driving conditions is measured through the driving test using a simulator. Discomfort levels of elbow joint motions were obtained as discomfort functions, which were based on subjects' perceived discomfort level estimated by magnitude estimation. The results showed that the discomfort posture of elbow joint motions occurred in the driving motion.

  • PDF

The Thermal and Circuits Design of an LED Bulb Considering Temperature Property (온도 특성을 고려한 LED 전구의 방열 및 회로 설계)

  • Song, Sang-Bin;Yeo, In-Seon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1261-1267
    • /
    • 2007
  • Although LEDs have been used in various applications with improving the brightness and luminous efficacy, the electrical and optical characteristics of high power LED varies at different temperature and starting time. In this paper, optimal heat sink and apparatus design were conducted using IR camera and ICEPAK on the LED bulb consisting with fourteen LED array. The temperatures of heat sink and LED device of the designed LED bulb without cooling pan were $74^{\circ}C\;and\;96.8^{\circ}C$, respectively, showing in good themal characteristics. For high efficiency driving circuit of LED array adopted optimal heat sink design, driving circuits of constant voltage and current circuits were suggested and fabricated. As a result the efficacy of all driving circuits showed more than 20 lm/W. Also, the constant current circuits are suitable for signal lamp, hallway lamp, and flash lamp having short operating time(about 30 min). On the other hand, a reading light and indoor lamp having long operating time can be controlled by constant voltage circuit.

Virtual Fatigue Analysis of a Small-sized Military Truck Considering Actual Driving Modes (실 주행조건을 고려한 군용 소형트럭의 가상 내구해석)

  • Suh, Kwon-Hee;Lim, Hyeon-Bin;Song, Bu-Geun;Ahn, Chang-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.120-127
    • /
    • 2008
  • A military vehicle undergoes normal to extreme driving conditions, which consequently induce the fatigue and fracture of cabin and frame. So, it is important to estimate the fatigue life of two components at an initial design stage. In this paper, Modal Superposition Method(MSM) was applied to evaluate the durability performance of a small-sized military truck. For reliable durability analysis, a Virtual Test Lab(VTL) Model was established by correlation with experimental results. These data were extracted from actual driving test, modal test, and SPMD(Suspension Parameter Measuring Device) test. This process shows that Virtual Fatigue Analysis can be a useful approach in the development of military vehicles as well as commercial vehicles.

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.

Eco Driving Pattern Analysis for Commercial Vehicles (상용차를 위한 에코 드라이빙 패턴 분석)

  • Lee, Min Goo;Park, Yong Kuk;Jung, Kyung Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.957-960
    • /
    • 2013
  • Eco driving comprises the use of feedback information that informs the driver of vehicle performance. This paper evaluated the performance of feedback device that reported instantaneous fuel economy to drivers while driving. We took the measurement by getting data through OBD port from commercial vehicle covered 67 km on road. The changes observed in fuel efficiency were established 10.6 % improvement in fuel economy.

  • PDF

Multimodal Interface Based on Novel HMI UI/UX for In-Vehicle Infotainment System

  • Kim, Jinwoo;Ryu, Jae Hong;Han, Tae Man
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.793-803
    • /
    • 2015
  • We propose a novel HMI UI/UX for an in-vehicle infotainment system. Our proposed HMI UI comprises multimodal interfaces that allow a driver to safely and intuitively manipulate an infotainment system while driving. Our analysis of a touchscreen interface-based HMI UI/UX reveals that a driver's use of such an interface while driving can cause the driver to be seriously distracted. Our proposed HMI UI/UX is a novel manipulation mechanism for a vehicle infotainment service. It consists of several interfaces that incorporate a variety of modalities, such as speech recognition, a manipulating device, and hand gesture recognition. In addition, we provide an HMI UI framework designed to be manipulated using a simple method based on four directions and one selection motion. Extensive quantitative and qualitative in-vehicle experiments demonstrate that the proposed HMI UI/UX is an efficient mechanism through which to manipulate an infotainment system while driving.

A Two-Step Micromirror for Low Voltage Operation

  • Hwang Yong-Ha;Han Seungoh;Lee Byung-Kab;Kim Jae-Soon;Pak James Jungho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.6
    • /
    • pp.270-275
    • /
    • 2005
  • In order for the application of the in-vivo endoscopic biopsy, a micromirror which can be driven at a low voltage is required. In this paper, a two-step micromirror composed of bottom electrodes, moving plate and top mirror plate is proposed. Because an electrical wiring of two plates are separated, they can be actuated separately. Therefore, an intermediate moving plate plays an important role in reducing the driving voltage in half. The designed device was fabricated by the surface micromachining. Maximum rotation angle of $6.3^{\circ}$ was obtained by applying DC 48V, while a conventional one-step mirror pulled down at DC 120V. The designed structure can be used in microphotonic applications requiring low driving voltage.

Development of a TOF LADAR Sensor and A Study on 3D Infomation Acquisition using Single Axis Driving Device (TOF기반의 2D LADAR 센서 개발 및 1축 구동장치를 활용한 3D 정보 획득에 대한 연구)

  • Kwon, JeongHoon;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.733-742
    • /
    • 2017
  • LADARs are used for important sensors in various applications, for example, terrain information sensors in self driving cars, safety sensors for factory automation, and 3D map constructions. This study develop important component technologies to improve the performance of a LADAR system under development in Korea. The component technologies include diode temperature regulation, reducing distance error in outdoor environment, and signal processing technique for better detection of distant objects. This paper explains the suggested component technologies and experimental results of the developed LADAR system. Also, the developed system is operated and tested an a single axis driving platform to acquire 3D information from 2D LADAR.

Design of PDP driving waveform for the addressing problem with wide screen driving (대화면 구동에 따른 데이터 기입 문제 해결을 위한 PDP 구동파형 설계)

  • O, Sun-Taek;Kim, Jun-Hyeong;Lee, Dong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.848-851
    • /
    • 2003
  • Display devices are becoming increasingly important as an interface between humans and machines in the growing information society In display device, PDP(Plasma Display Panel) has many advantages in that wide screen, light weight, thin, wide viewing angle and unaffected by magnetic field. In this paper, modified ramp waveform is suggested by Vt Close Curve, and PDP driving circuit is designed by modified ramp waveform, this modified ramp waveform have more addressing wall voltage better then the old ramp waveform.

  • PDF

Design and experimentation of remote driving system for robotic speed sprayer operating in orchard environment

  • Wonpil, Yu;Soohwan Song
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.479-491
    • /
    • 2023
  • The automation of agricultural machines is an irreversible trend considering the demand for improved productivity and lack of labor in handling agricultural tasks. Unstructured working environments and weather often inhibit a seemingly simple task from being fully autonomously performed. In this context, we propose a remote driving system (RDS) to aid agricultural machines designed to operate autonomously. Particularly, we modify a commercial speed sprayer for orchard environments into a robotic speed sprayer to evaluate the proposed RDS's usability and test three sensor configurations in terms of human performance. Furthermore, we propose a confidence error ellipsebased task performance measure to evaluate human performance. In addition, we present field experimental results describing how the sensor configurations affect human performance. We find that a combination of a semiautonomous line tracking device and a wide-angle camera is the most effective for spraying. Finally, we discuss how to improve the proposed RDS in terms of usability and obtain a more accurate measure of human performance.