• Title/Summary/Keyword: Driving control

Search Result 2,818, Processing Time 0.031 seconds

A Verification of a Sensorless BLDC Motor Drive System to Control 4-axis Fins for a Guided Artillery Munition by HILS (유도형 탄약의 4축 조종날개 제어용 Sensorless BLDC 전동기 구동시스템 개발 및 HILS에 의한 검증)

  • Lee, Tae-Hyung;Kim, Sang-Hoon;Cho, Chang-Yeon;Pak, Chang-Ho;Kim, Jae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.580-586
    • /
    • 2015
  • A brushless DC (BLDC) motor control system for four-axis driving fins to control the flight attitude of a guided artillery munition is developed in this study. This system adopts a simple sensorless control scheme without a Hall sensor. A 12-step driving sensorless BLDC motor scheme is used to improve the output torque. This system has many restrictive problems that hinder the verification of a real system. For example, this has cost and environmental limitations. Therefore, this study develops HILS to verify a four-axis driving fin control system and verifies the position control system hardware by HILS operation.

A Method of Estimation of Energy Consumption according to a Supply Pressure for Pneumatic Cylinder Driving Apparatus (공급압력 변화에 의한 공기압 실린더 구동장치의 소비에너지 변화량 추정 방법)

  • Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.15-20
    • /
    • 2012
  • Pneumatic cylinder meter-out driving apparatus is used widely because it is clean, lightweight, and can be easily serviced. In this study an estimation method of energy consumption for pneumatic cylinder meter-out driving apparatus is proposed. The proposed method is derived from state equation and energy equation of air, and, the equation of motion of a moving part of a pneumatic cylinder reflecting the characteristics of the meter-out driving. The effectiveness of the proposed method is proved by simulation study and it demonstrates that the proposed method can evaluate the energy consumption quickly and easily when the parameters of the driving apparatus are changed.

Development of a Driving Operation System for Vehicle Simulator (차량 시물레이터의 운전석 시스템 개발)

  • 유성의;박민규;유기성;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.291-291
    • /
    • 2000
  • A vehicle driving simulator is a virtual reality device which a human being feels as if the one drives a vehicle actually. Driving Operation System acts as an interface between a driver and a driving simulator. This paper suggests the driving operation system for a driving simulator. This system consists of a controller, DC geared motor, MR brake, rotary encoders, steeping motor and bevel gear box. Reaction force and torque on the steering system were made by DC_Motor and MR_Brake. Reaction force and torque on the steering system were compare between real car and a driving simulator. The controller based on the 80C196KC micro processor that manage and transfer signal.

  • PDF

A Study on the Development of Driving Simulator for Improvement of Unmanned Vehicle Remote Control (무인차량 원격주행제어 신뢰성 향상을 위한 통합 시뮬레이터 구축에 관한 연구)

  • Kang, Tae-Wan;Park, Ki-Hong;Kim, Joon-Won;Kim, Jae-Gwan;Park, Hyun-Chul;Kang, Chang-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.86-94
    • /
    • 2019
  • This paper describes the development of unmanned vehicle remote control system which is configured with steering and accelerating/braking hardware to improve the sense of reality and safety of control. Generally, in these case of the remote control system, a joystick-type device is used for steering and accelerating/braking control of unmanned vehicle in most cases. Other systems have been developing using simple steering wheel, but there is no function of that feedback the feeling of driving situation to users and it mostly doesn't include the accelerating/braking control hardware. The technology of feedback means that a reproducing the feeling of current driving situation through steering and accelerating/braking hardware when driving a vehicle in person. In addition to studying feedback technologies that reduce unfamiliarity in remote control of unmanned vehicles, it is necessary to develop the remote control system with hardware that can improve sense of reality. Therefore, in this study, the reliable remote control system is developed and required system specification is defined for applying force-feedback haptic control technology developed through previous research. The system consists of a steering-wheel module similar to a normal vehicle and an accelerating/braking pedal module with actuators to operate by feedback commands. In addition, the software environment configured by CAN communication to send feedback commands to each modules. To verify the reliability of the remote control system, the force-feedback haptic control algorithms developed through previous research were applied, to assess the behavior of the algorithms in each situation.

The Study on Driving Characteristics of Crane Wheel Shape (크레인 휠 형상에 따른 구동 특성에 관한 연구)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.185-195
    • /
    • 2000
  • This pacer studied on the lateral motion and yaw motion of the gantry crane which is used for the automated container terminal with two driving wheel types. Though several problems are occcurred in driving of gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operation. There are two types, cone and flat t y pin driving wheel shape. In cone type, lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of gantry crane with two driving wheel types are derived. Then, we investigate the driving characteristics of gantry crane. And this study used PD(Proportional-Derivative) Controller to control the lateral displacement and yaw angle of the gantry crane. The simulation result of the driving mechanism using the Runge-Kutta Method is presented in this paper.

  • PDF

Analysis of Elderly Driving Performance at Urban Skewed Intersection using Driving Simulator (고령 운전자 도심부 비 직각 교차로 운전행태 분석)

  • Ha, Tae-Woong;Hong, Seung-Jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • In this study, the driving performances of elderly who's age is over 65 were evaluated. The driving simulation was conducted using a compact driving simulation (CDS) and the simulation scenarios were developed from actual roads by replicating geometry of skewed intersection and traffic control devices located in Jungnang-gu, Seoul, Korea. 27 elderly drivers and 10 non-elderly drivers were recruited and participated on the virtual turning right and going straight driving experiment of CDS. Virtual driving data of driving time, speed, distance, acceleration and deceleration speeds, brake power, and steering wheel rotation angle were recorded and analyzed. Generally, elderly driver took more times to pass through the skewed intersection road and showed lower approaching speed as much as 40% and 25% in case of turning right and going straight scenarios respectively. The speed deviation at skewed intersection road between elderly and non-elderly driver is expected to cause frequent lane changes and overtaking.

A Study on the Voltage Control of a Single Phase Full-bridge Inverter using SPWM Driving Method (SPWM 구동 방식을 이용한 단상 풀 브리지 인버터의 전압 제어에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.851-858
    • /
    • 2017
  • In this study, the voltage control system of a single phase full bridge inverter was designed based on the SPWM driving method. The voltage control system consists of a single-phase full-bridge inverter, a PI controller for linearly compensating the error between the reference voltage and the output voltage, a PWM driving circuit for generating the gate signal using the SPWM method from the controller signal, and an LC filter for filtering the inverter output voltage waveform into sinusoidal waveform. Finally, the voltage control system of a single-phase full-bridge inverter based on the PWM driving method was modeled using EMTP-RV and by showing that the output voltage accurately converges the reference voltage through several simulation examples, the validity of the control system design was verified.

Anti-Slip Control of Railway Vehicle Using Load Torque Disturbance Observer and Speed Sensor-less Vector Control (부하토크외란관측기와 속도센서리스 백터제어를 이용한 철도모의장치의 Anti-Slip 제어)

  • Lee S. C.;Jeon K. Y.;Jho J. M.;Lee S. H.;Kang S. U.;Oh B. H.;Lee H. G.;Han K. H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.635-642
    • /
    • 2004
  • In electric motor coaches. the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control based on disturbance observer and sensor-less vector control. The numerical simulation and experimental results point out that the proposed readhesion control system has the desired driving wheel torque response for the tested bogie system of electric coach. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Study on Improving Stability of 6×6 Skid-Steering Vehicle by Employing Skyhook Control Method (스카이 훅 제어를 이용한 6×6 견마 차량의 주행 안정성 향상 방안 연구)

  • Jeon, Su-Hee;Lee, Jeong-Han;Yoo, Wan-Suk;Kim, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.905-912
    • /
    • 2011
  • In order to protect equipment such as controllers, it is important to improve the driving stability of $6{\times}6$ skidsteering vehicles driven on rough roads. The estimation and improvement of the driving stability should be based on the vertical acceleration, roll acceleration, and pitch acceleration. These variables will be used to achieve multivariable control and increase the vehicle driving stability. In this study, to improve vehicle stability by reducing the vertical acceleration, roll angular acceleration, and pitch angular acceleration, the skyhook control method is employed to control MR(Magnetorheological) dampers equipped with the vehicle. The proposed control system is tested in multibody dynamic simulation.

Development of a Feed Shaft Driving System for Planters Using the Fifth Wheel as a Speed Sensor (5륜을 이용한 주행 속도 비례형 파종축 구동 장치 개발)

  • 김중현;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.399-405
    • /
    • 1996
  • In order to maintain a constant speed ratio between the tractor and attached seed planter, a feedback control unit to rotate the feed shaft of the planter in proportional to the ground speed of the tractor was designed. The fifth wheel was used as a ground speed sensor for the unit. Using this control unit a feed shaft driving system was developed and tested to estimate its performance both in laboratory and fields. The test results showed that the system rotates the feed shaft proportionally to the ground speed in the range of the normal planting speed of 0.5-0.8m/s with errors less than 5%.

  • PDF