• Title/Summary/Keyword: Driving Workload

Search Result 80, Processing Time 0.027 seconds

Relative Effects of Education and In-vehicle Information System on Eco-driving and Driving Workload (교육과 차량 내 정보 제공 장비가 에코 드라이빙 행동과 운전자 작업부하에 미치는 영향에 대한 검증)

  • Lee, Kyehoon;Oah, Shezeen
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.66-70
    • /
    • 2013
  • This study examined the relative effects of education and eco-IVIS(in-vehicle information system) to reduce fuel consumption and greenhouse gas emissions. Also the study investigated the increasing of driving workload when drivers interact with intervention technique. Thirty participants randomly assigned into two groups(training and eco-IVIS) and conducted driving before and after the each intervention technique. While driving, we observed three driving behaviors: Frequency of excessive RPM, percent of speeding, and mean fuel efficiency. Also the Driver Activity Load Index was used to rate participants' subjective ratings of driving workload. Although the results showed positive impact of both education and eco-IVIS to increasing the eco-driving behaviors, eco-IVIS was more effective than education. However, we found comparable level of driving workload in the education and eco-IVIS.

Comparative Study on Difference in Driver's Workload between Driving Simulator and Field Driving in Tunnel, Highway (드라이빙 시뮬레이터 주행과 현장주행시 운전자 반응 비교 연구)

  • Kim, Hyun Jin;Kim, Ju Young;Choi, Gyeong Im;Ju, Che Hong;OH, Cheol
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.139-145
    • /
    • 2017
  • PURPOSES : This study analyzed the difference in a driver's workload between using a driving simulator and field driving in tunnel, highway. METHODS : Based on the literature review, it was found that a driver's workload could be quantified using biosignals. This study analyzed the biosignal data of 30 participants using data collected while they were using a driving simulator and during a field test involving tunnel driving. Relative energy parameter was used for biosignal analysis. RESULTS : The driver's workload was different between the driving simulator and field driving in tunnels, highway. Compared with the driving simulator test, the driver's workload exhibited high value in field driving. This result was significant at the 0.05 level. The same result was observed before the tunnel entrance section and 200 m after the entrance section. CONCLUSIONS : This study demonstrates the driving simulator effect that drivers feel safer and more comfortable using a driving simulator than during a field test. Future studies should be designed considering the result of this study, age, type of simulator, study site and so on.

A Comparison of Subjective Mental Workload Measures in Driving Contexts

  • Kim, Ji Yeon;Ji, Yong Gu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.167-177
    • /
    • 2013
  • Objective: This study aims to compare the usefulness of subjective measures which are comprised of existing methods like NASA-TLX, Bedford-scale and ZEIS and newly developed method like DALI in measuring drivers' mental workload in terms of validity, sensitivity and diagnosticity. Background: Nowadays, with the development of intelligent vehicle and HMI, mental workload of driver has become more and more important. For this reason, the studies on drivers' mental workload about driving situation and the use of information technology equipment such as mobile phones and navigations were conducted intensively. However, the studies on measuring drivers' mental workload were rarely conducted. Moreover, most of studies on comparison of subjective measures were used with performance based measure. However, performance based measures can cause distraction effect with subjective measures. Method: Participants (N=19) were engaged in a driving simulation experiment in 2 driving contexts (downtown driving and highway driving context). The experiment has 2 sessions according to driving contexts. The level of difficulties by driving contexts were adjusted according to existence of intersections, traffic signs and signals, billboards and the number of doublings. Moreover, as criteria of concurrent validity and sensitivity, the EEG data were recorded before and during the sessions. Results: The results indicated that all subjective methods were correlates with EEG in high-way driving. On the contrary to this, in downtown driving, all subjective methods were not correlates with EEG. In terms of sensitivity, multi-dimensional scales (NASA-TLX, DALI) were the only ones to identify differences between high way and downtown driving. Finally, in terms of diagnosticity, DALI was the most suitable method for evaluating drivers' mental workload in driving context. Conclusion: The DALI as newly developed method dedicated to evaluate driver's mental workload was superior in terms of sensitivity and diagnosticity. However, researchers should consider the characteristics of each subjective method synthetically according to research objective by selecting the method in subjective measures. Application: The results of this study could be applied to the intelligent vehicle and next generation of HMI design to decrease mental workload of driver and for the development of new subjective method in vehicle domain.

The Effects of Secondary Taskon Driving Performance and Subjective Workload (운전시 부작업이 수행도와 심리적 작업부하에 미치는 영향)

  • 윤상영;이근회;김정룡
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.145-154
    • /
    • 1998
  • The effects of secondary task on driving performance and subjective workload were investigated during a simulated driving. The driving performance was determined by the appropriateness of break timing. The driving simulator was provided by the Korea Road Traffic Safety Association. The subjective workload was tested by using a multidimensional measure such as NASA-TLX. Road was categorized into two types: narrow alley and wide street. The secondary task included pushing the number on the cellular phone, pushing radio channel, and conversing with a passenger. Seventeen subjects volunteered in the study. The data were analyzed by using SAS. Results showed that using the cellular phone and pushing channel during driving caused 3∼22% decline of driving performance and 42∼59% increase of subjective workload respectively. These results indicated that the secondary task could be potentially dangerous although there was not a significant performance decrease due to the notable increase of mental workload. In the future, if we can use a more sensitive and realistic driving simulator, the effects of secondary task under a dynamic driving situation can be investigated.

  • PDF

Effects of Advancing Age on Drivers' Cognitive Workload (연령 증가에 따른 주행 중 인지 부하의 특성 변화)

  • Lee, Yong-Tae;Kim, Man-Ho;Son, Joon-Woo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • Driving is a complex psychomotor task often interrupted by secondary activities that increase cognitive workload and divert attention away from the roadway. The risk of inattentive driving is known to vary with age. To assess the characteristics of advancing age on driver's cognitive workload under dual task condition, we evaluate the performance of 96 drivers divided into three age groups: 20's, 40's, and 60's. This study considers driver's cognitive workload in the context of urban and highway driving. Error rate & Dual task cost are used to measure driver's cognitive workload. Results indicate that age impacts cognitive workload during dual task driving conditions.

Development of Vehicle Environment for Real-time Driving Behavior Monitoring System (실시간 운전 특성 모니터링 시스템을 위한 차량 환경 개발)

  • Kim, Man-Ho;Son, Joon-Woo;Lee, Yong-Tae;Shin, Sung-Heon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • There has been recent interest in intelligent vehicle technologies, such as advanced driver assistance systems (ADASs) or in-vehicle information systems (IVISs) that offer a significant enhancement of safety and convenience to drivers and passengers. However, unsuitable design of HMI (Human Machine Interface) must increase driver distraction and workload, which in turn increase the chance of traffic accidents. Distraction in particular often occurs under a heavy driving workload due to multitasking with various electronic devices like a cell phone or a navigation system while driving. According to the 2005 road traffic accidents in Korea report published by the ROad Traffic Authority (ROTA), more than 60% of the traffic accidents are related to driver error caused by distraction. This paper suggests the structure of vehicle environment for real-time driving behavior monitoring system while driving which is can be used the driver workload management systems (DWMS). On-road experiment results showed the feasibility of the suggested vehicle environment for driving behavior monitoring system.

Study on Evaluation Method of Driver's Cognitive Workload with using In-Vehicle Information Systems (차량정보기기 사용에서 운전자의 인지부담 평가방법에 관한 연구)

  • Jeon, Yong-Wook
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.735-739
    • /
    • 2010
  • Driving workload is increasing according to developing new in-vehicle devices and introducing driving information systems. In this research using a driving simulator, EFRP (Eye Fixation Related Potential) was measured for evaluating driving attention and distraction while tasking cognitive workload, n-back tasks. The result of EFRP was compared with driver behaviors. Results suggest that EFRP is able to use for a method of evaluating driving workload, however, the analysis of driver behavior is difficult to find driving attention and distraction in the case of free flow of traffic situation.

A study on the relationship between the time for a driver implement driving secondary task and mental workload due to the speed changes in driving simulation. (시뮬레이터 환경에서 속도변화에 따른 운전자의 이차과제 수행시간과 정신적 부하와의 관계에 대한 연구)

  • Son, Je-Sung;Yu, Seung-Dong;Kim, Jin-Ho;Park, Peom
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.114-119
    • /
    • 2002
  • In driving situation, driver’s performance can be divided into primary task and secondary task. Many studies of primary task have been in progress, but those of secondary task are not implemented sufficiently. However, the driver’s error is greatly influenced by secondary task. In this study, an experiment was assessed to determine the relationship between the driver's operation time for the secondary task and mental workload due to speed changes in a driving simulation. The time to perform the secondary task was analyzed with Fitts’ Law, and mental workload was analyzed with RNASA-TLX(Revision of NASA-Task Load Index). The results has showed that the higher speed, the weaker the explanation by the use of Fitts' Law and the result of analyzing mental workload using RNASA-TLX was similar to the result of Fitts’ Law.

  • PDF

The Analysis of Driving Workload and Gamma Waves on Curved Sections in Expressway (고속도로 커브구간에서 운전자의 운전부하와 감마파 특성분석에 관한 연구)

  • KANG, Xuejian;NAMGUNG, Moon;KIM, Won Chul;WANG, Weijie
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.6
    • /
    • pp.560-569
    • /
    • 2016
  • Previous studies show that driver mental workload plays a significant role in the occurrence of traffic accidents. This study also analyzes driving workload under different road conditions especially with the brain wave data collected by a driving simulator. We use a logistic regression model to explain the relationship between driving workload and gamma brain waves. The results show that beta band of brain waves becomes broader with more curved sections while alpha band and gamma band become narrower. Since driving workload is negatively correlated with gamma band, it can be concluded that driving condition with less curved section is beneficial for reducing driving stress and increasing driving comfort.

Design Verification of an E-driving System of a 44 kW-class Electric Tractor using Agricultural Workload Data (농작업 부하데이터를 활용한 44 kW급 전기구동 트랙터의 E-driving 시스템 설계 검증)

  • Baek, Seung-Yun;Baek, Seung-Min;Jeon, Hyeon-Ho;Lee, Jun-Ho;Kim, Wan-Soo;Kim, Yong-Joo
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.36-45
    • /
    • 2022
  • The aim of this study was to verify an E-driving system of a 44 kW-class electric tractor using agricultural workload data. Workload data were acquired during field test (plow tillage, rotary tillage, loader operation, field driving, asphalt driving) using a conventional tractor with a load measurement system. These workload data were converted to data of a 44 kW-class tractor based on the load factor of the engine. These data were used to verify the design of the E-driving system of an electric tractor. High-load operations such as plow tillage, rotary tillage, and loader operation could be performed at stage L and stage M. High-speed operation (asphalt driving) could be effectively performed at stage H using a rated rotational speed of the motor. As a result, the E-driving system of the electric tractor was possible to perform all major agricultural operations according to gear stages of range shift. Based on results of this research, we plan to develop an electric tractor equipped with an E-driving system and conduct research on actual vehicle verification in the future.