• 제목/요약/키워드: Driving Voltage

검색결과 1,223건 처리시간 0.038초

New ETL 층에 의한 저전압 구동 백색 발광 OLED (Low Voltage Driving White OLED with New Electron Transport Layer)

  • 문대규
    • 한국전기전자재료학회논문지
    • /
    • 제22권3호
    • /
    • pp.252-256
    • /
    • 2009
  • We have developed low driving voltage white organic light emitting diode with a new electron transport material, triphenylphosphine oxide ($Ph_{3}PO$). The white light emission was realized with a rubrene yellow dopant and blue-emitting DPVBi layer. The new electron transport layer results in a very high current density at low voltage, resulting in a reduction of driving voltage. The device with a new electron transport layer shows a brightness of $1150\;cd/m^2$ at a low driving voltage of 4.3 V.

Implementation of PDP Driving Circuit for AC-Type

  • Jang, Yun-Seok;Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제5권3호
    • /
    • pp.285-288
    • /
    • 2007
  • PDP(Plasma Display Panel) driving circuit requires switching devices and capacitors to stand up high voltages over 150volts. Thereby the power consumption and the cost of a PDP driving circuit increase. In this paper, a PDP driving circuit is proposed that can be operated with a lower supply voltage than the supply voltage of conventional driving circuit. The operation of the proposed driving circuit is verified by the computer simulation and experiments. PSPICE simulation and experiments results show that the output signal can drive PDP cells when the supply voltage is higher than 40volts.

A Driving Scheme Using a Single Control Signal for a ZVT Voltage Driven Synchronous Buck Converter

  • Asghari, Amin;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.217-225
    • /
    • 2014
  • This paper deals with the optimization of the driving techniques for the ZVT synchronous buck converter proposed in [1]. Two new gate drive circuits are proposed to allow this converter to operate by only one control signal as a 12V voltage regulator module (VRM). Voltage-driven method is applied for the synchronous rectifier. In addition, the control signal drives the main and auxiliary switches by one driving circuit. Both of the circuits are supplied by the input voltage. As a result, no supply voltage is required. This approach decreases both the complexity and cost in converter hardware implementation and is suitable for practical applications. In addition, the proposed SR driving scheme can also be used for many high frequency resonant converters and some high frequency discontinuous current mode PWM circuits. The ZVT synchronous buck converter with new gate drive circuits is analyzed and the presented experimental results confirm the theoretical analysis.

저전력화를 위한 AC형 PDP구동회로의 설계 (Design of AC PDP driving Circuit for Low Power Consumption)

  • 장윤석;최진호
    • 한국정보통신학회논문지
    • /
    • 제10권11호
    • /
    • pp.2014-2019
    • /
    • 2006
  • PDP구동회로는 160V 이상의 고전압을 유지하기 위한 스위칭 소자와 커패시터를 필요로 한다. 이러한 고전압용 소자의 사용은 PDP 구동회로의 가격을 상승시키고 전력 소모를 증가시키는 원인이 된다. 기존의 PDP 구동회로는 3개의 공급 전압원과 16개의 스위칭 소자로 구성 되어 있다. 그러나 본 논문에서는 2개의 공급 전압원과 12개의 스위칭 노자를 사용하고, 공급 전압도 기존의 공급 전압보다 낮은 공급 전압을 사용하는 구동회로를 제안한다. 컴퓨터시뮬레이션을 통하여 입력 주파수가 70kHz에서 100kHz일 때 45V 이상의 공급전압을 사용한다면 PDP 셀 구동을 위한 충분한 크기의 신호를 얻을 수 있음을 확인하였다.

LED Module의 주위 온도에 따른 전기적 광학적 특성 연구 (The Study on Electrical and Optical Properties in LED Module by the Environment Temperature)

  • 이승민;이성진;양종경;임연찬;박대희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.222-223
    • /
    • 2006
  • In this paper, we manufactured high flux LED module with Through Hole type. and we measured electrical, optical and thermal properties by driving type. LED module was composed with 8*8 arrangement form by using the glass epoxy PCB. Also, we measured the most suitable driving type with static voltage driving type and static current driving type. As a result, the LED Module of static voltage driving type showed high luminance characteristic than the static current driving type by suppling enough bias. However, the static current driving type showed more stable driving properties because of fast decreasing properties about brightness by increasing the surrounding temperature in the static voltage driving type. Also, due to Quantum confined Stark effect from piezoelectric field, the wavelength of bule peak shifted to long wavelength direction by increasing the surrounding temperature in the static voltage driving type.

  • PDF

Realization of High Luminous Efficacy PDP with Low Voltage Driving

  • Whang, Ki-Woong;Bae, Hyun-Sook;Jung, Hae-Yoon;Kwon, O-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.153-156
    • /
    • 2008
  • The use of high Xe content gas is a powerful method for improving the discharge efficacy in PDP, but the accompanying high driving voltage prevents it from being used aggressively. In this paper, we tried to find a method to lower the driving voltage under high Xe gas condition with a new protecting layer. The effective secondary electron emission caused by Xe ions can result in the low voltage driving in panels with high Xe content gas and more importantly high luminous efficacy which were confirmed with the computer simulation and panel experiment.

  • PDF

An Address Voltage Stabilization Circuit for the Single-Side Driving Method of AC Plasma Display Panels

  • Kim, Tae-Hyung;Kang, Jung-Won;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.884-891
    • /
    • 2009
  • An address voltage stabilization circuit for the single-side driving (SSD) method for AC plasma display panels (PDP) is proposed. The single-side driving method, which eliminates a common sustaining driver, uses only two electrodes in a three electrode AC PDP structure. The high-impedance (Hi-Z) mode operation of the data drive ICs during the sustaining period is needed for surface gas-discharge without misfiring in the SSD method but it produces the problem that the address voltage increases up to the breakdown voltage. The proposed circuit based on a flyback converter can stabilize the address voltage under the breakdown voltage and provide better surface gas-discharge performance without any misfiring in the SSD scheme.

구동 방식을 고려한 가동코일형 LOA의 동특성 (Dynamic Characteristic of Moving Coil Type LOA with Consideration of Driving Method)

  • 장석명;권철;정상섭;성소영;이성래;김봉수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.681-683
    • /
    • 2000
  • This paper presents to find suitable driving voltage source for moving-coil-type linear oscillatory actuator(LOA). Thus, we construct control system and proposed three type driving voltage source. This scheme demonstrated experiments. Then, we find suitable driving voltage source for LOA.

  • PDF

전압 분배용 전하펌프를 사용한 LED 구동회로 (LED Driving Circuit using Charge Pump for Voltage Distribution)

  • 윤장희;유성호;염정덕
    • 조명전기설비학회논문지
    • /
    • 제26권8호
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper, a new LED driving circuit which is able to control dimming of LED is proposed using charge pump. The proposed LED driving circuit steps down the input voltage to operate LED without DC-DC converter. The operation of this driving circuit is verified by P-Spice simulation, and the characteristics of the driving circuit is measured and evaluated in the experiments. As a result, the driving circuit efficiency of 88.5[%] is obtained when all LEDs are turned on by digital control method at the highest dimming level(255/255).

대전입자형 디스플레이 소자의 충전전압에 따른 구동특성 분석 (Analysis of Driving Characteristics by Putting Voltage of Charged Particle Type Display Device)

  • 김진선;김영조
    • 한국전기전자재료학회논문지
    • /
    • 제25권1호
    • /
    • pp.48-52
    • /
    • 2012
  • The charged particle type display device is a kind of the reflectivity type display and shows an image by absorption and reflection of external light source. The charged particle is important factor for driving of the display and quantity of charge per mass of the charged particle determines the driving voltage, contrast ratio, response time, etc. But it is easy for the charged particles to be damaged in the putting process of the display and the damages cause lumping phenomenon of the charged particles. Because the lumping phenomenon makes high driving voltage, low quality of optical properties, short life time, etc, so the charged particles must be filled by stable putting methods. In this paper, we filled the charged particles into the panels by electric fields to improve the electrical and optical characteristics of the display. Also, we analyzed the driving characteristics of the charged particles according to the applied putting voltages.