• 제목/요약/키워드: Driving System

검색결과 4,633건 처리시간 0.035초

Intelligent Online Driving System

  • Xuan, Chau-Nguyen;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.479-479
    • /
    • 2000
  • Recently, IVS(Intelligent Vehicle Systems) or ITS(Intelligent Traffic Systems) are much concerned subjects of automotive industry. In this paper, we will introduce an Intelligent Online Driving System for a car. This system allows the driver to be able to drive the car just by operating an integrated joystick. The proposed driving system could be implemented into any car and the key point of the design is that the driver still can drive the car as normal without using the joystick. Our Intelligent Online Driving System includes the integrated joystick, steering wheel control system, brake and acceleration (B&A)pedals control system, and the central control computer system. Steering wheel and B&A pedals are controlled by AC servo-motors. The integrated joystick generates the desired positions and the embedded computer controls these two servomotors to track the commands given by joystick. The control method for two servo-motors is PID control.

  • PDF

텔레매틱스 HMI 연구를 위한 드라이빙 시뮬레이터의 개발 (Development of a Driving Simulator for Telematics Human-Machine Interface Studies)

  • 구태윤;김배영;신희종;손영탁;서명원
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.16-23
    • /
    • 2009
  • Driving simulators are useful tools not only to test the components of future cars but also to evaluate the telematics service and HMI (Human-Machine Interface). However driving simulators cannot be implemented to test and evaluate the telematics service system because the GPS (Global Positioning System) which contains basic functional support for the telematics module do not work in the VR (virtual reality) environment. This paper presents a method to implement telematics service to a driving simulator by developing the GPS simulator which is able to emulate GPS satellite signals consist of NMEA-0183 protocol and RS232C communication standards. It is expected that the driving simulator with the GPS simulator can be used to study HMI and human-factor evaluations of the commercial telematics system to realize the HiLES (Human-in-the-Loop Evaluation System).

IOT 기반의 전기 자전거 제어 시스템 개발 (Development of a Control System for E-Bike Based on IOT)

  • 박종진;조범동
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.150-157
    • /
    • 2016
  • In this paper, a control system for E-bike based on IOT was developed, which collects and monitors information of states of E-bike and surrounding environments from several sensors and control devices in E-bike, and informs the possible dangers to rider when riding the E-bike. Developed electronic control system can manage battery efficiently, obtain battery's remaining power in real-time and provide possible riding distance to rider. It makes possible for rider to schedule near optimal riding route in terms of battery usage and respond quickly to battery discharge. Results of applying developed system to E-bike show that according to driving-mode, possible driving distance can be calculated efficiently and using user application App, real-time driver position marking and driving route searching functions lead to energy efficient E-bike driving. Later we will endeavor to integrate BMS, ECU, smart-phone and PC(server) to provide stable driving system based on various driving information of E-bike.

수·전동 휠체어 구동부 시스템 설계 (Design of Electric Automatic Manual Wheelchair Driving System)

  • 김진남
    • 한국산학기술학회논문지
    • /
    • 제14권11호
    • /
    • pp.5392-5395
    • /
    • 2013
  • 환자 및 노약자 이동에 중요한 역할을 하고 있는 수 전동휠체어의 핵심부인 구동부를 새롭게 설계했다. 구동부는 고속모터와 다단기어 치형을 설계적용하고, 굽힘강도와 면압강도를 고려해 큰 추진력을 얻을 수 있도록 성능을 검증하였다. B-Type의 마찰판식 클러치 전자식 브레이크(다판 방식의 무여자 작동형)를 동 축상에 설치해, 큰 토크에도 급격한 제동이 가능하도록 했다. 본 연구에 설계된 다단치차 감속기를 수 전동휠체어 구동장치에 사용하므로서, 소형화, 경량화를 이루고 구동 효율이 기존제품보다 30% 향상된 구동부를 구성할 수 있었으며, 보수 및 관리의 용이성을 함께 추구했다.

유도전동기 구동을 위한 자동동조 퍼지 PID제어 앨고리즘의 적용 (Application of Auto-tunning Fuzzy PID control Algorithm for Drive System of Induction motor)

  • 윤병도;정재륜;제수형
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제7권4호
    • /
    • pp.42-50
    • /
    • 1993
  • 본 연구에서는 자동동조 퍼지 PID 제어 앨고리즘을 사용하여 유도전동기 구동방법을 제안하였다. 퍼지제어에서는 수학적인 모델링이 없이 경험적인 정보를 이용하면 제어가 가능하며 퍼지룩업 테이블을 적절히 이용하면 실시간 제어도 가능한 것이 특징이라 볼 수 있다. 또한, 퍼지규칙을 몇 개의 영역으로 구획하여 시스템의 변화가 발생되고, 또 파라미터의 변화가 유도 전동기 구동 특성에 크게 영향을 주는 것을 감안, 본 시스템의 고성능, 고정도제어를 위하여 퍼지 앨고리즘을 적용하여 파라미터가 자동동조 기능을 갖는 유도전동기의 구동 시스템을 설계, 제작하였으며 그 특성을 기존의 PID 제어방식과 비교하였다.

  • PDF

트랙터용 경제운전 안내장치 개발 (Development of Eco Driving System for Agricultural Tractor)

  • 박석호;김영중;임동혁;김충길;정상철;김혁주;장양;김성수
    • Journal of Biosystems Engineering
    • /
    • 제35권2호
    • /
    • pp.77-84
    • /
    • 2010
  • In this study, we tried to predict tractor power output, fuel consumption rate and work performance indirectly in order to develop an eco driving system. Firstly, we developed equations which could predict tractor power output and fuel consumption rate using characteristic curves of tractor power output. Secondly, with actual engine rpm determined by initial engine rpm and work load, tractor power output and fuel consumption rate were forecasted. Thirdly, with speed signals of GPS sensor system, it was possible to foresee tractor work performance and fuel consumption rate. Lastly, precision of the eco driving system was evaluated through tractor PTO test, and effects of the eco driving system were investigated in the plowing and rotary tilling operations. Engine rpm, power output, fuel consumption rate, work performance and fuel consumption rate per plot area were displayed in the eco driving system. Predicted tractor power outputs in the full load curve were well coincided with the actual power output of prototype, but small differences, 1 to 6 ㎾, were found in the part load curve. Error of the fuel consumption rate was 0.5 L/h, 4.5%, the greatest, and 1 to 3 L/h at the part load curve. It was shown that 69% and 53% of fuel consumption rates could be reduced in plowing and rotary tilling operations, respectively, when the eco driving system was installed in tractor.

상용차용 전동식 클러치의 동적특성에 관한 연구 (A Study on the Dynamic Characteristics of a Electric Motor Clutch for Commercial Vehicles)

  • 조인성;정재연
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.52-58
    • /
    • 2014
  • To improve the performance of clutch actuator of clutch-by-wire system for commercial vehicles, it is necessary to understand the driving characteristics of the system. To explain and predict the effects of driving characteristics on clutch characteristics, AMESim software is used. The simulation model of clutch-by-wire system is developed in the AMESim environments under the geometrical dimensions and driving mechanisms of the clutch-by-wire system, such as the rotation speed of the DC motor, the gear ratio of the reducer, the design parameters of the release fork, the coefficient of the clutch diaphragm spring, and so on. The results show that the theoretical analysis of the clutch-by-wire system for commercial vehicles using the AMESim software find out the driving characteristics of the clutch actuator, and predict the performance characteristics of the clutch-by-wire system.

듀얼 조향구동 장치를 갖는 포크리프트 타입 무인운반차(AGV)의 개발 (Development of Forklift-Type Automated Guided Vehicle(AGV) with Dual Steering Drive Unit)

  • 원창연;강선모;남윤의
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.145-153
    • /
    • 2021
  • Automated Guided Vehicle (AGV) is commonly used in manufacturing plant, warehouse, distribution center, and terminal. AGV is self-driven vehicle used to transport material between workstations in the shop floor without the help of an operator, and AGV includes a material transfer system located on the top and driving system at the bottom to move the vehicle as desired. For navigation, AGV mostly uses lane paths, signal paths or signal beacons. Various predominant sensors are also used in the AGV. However, in the conventional AGV, there is a problem of not turning or damaging nearby objects or AGV in a narrow space. In this paper, a new driving system is proposed to move the vehicle in a narrow space. In the proposed driving system, two sets of the combined steering-drive unit are adopted to solve the above problem. A prototype of AGV with the new driving system is developed for the comparative analysis with the conventional AGV. In addition, the experimental result shows the improved performance of the new driving system in the maximum speed, braking distance and positioning precision tests.

가속도센서를 이용한 운전패턴 인식기법 (Recognition of Driving Patterns Using Accelerometers)

  • 허근섭;배기만;이상룡;이춘영
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.517-523
    • /
    • 2010
  • In this paper, we proposed an algorithm to detect aggressive driving status by analysing six kinds of driving patterns, which was achieved by comparing for the feature vectors using mahalanobis distance. The first step is to construct feature matrix of $6{\times}2$ size using frequency response of the time-series accelerometer data. Singular value decomposition makes it possible to find the dominant eigenvalue and its corresponding eigenvector. We use the eigenvector as the feature vector of the driving pattern. We conducted real experiments using three drivers to see the effects of recognition. Although there exists differences from individual drivers, we showed that driving patterns can be recognized with about 80% accuracy. Further research topics will include the development of aggressive driving warning system by improving the proposed technique and combining with post-processing of accelerometer signals.

전자제어식 자동변속기 장착 승용차의 구동성능 해석 (Analysis of Driving Performance for the Passenger Car Equipped with an Electronically Controlled Automatic Transaxle)

  • 김선일;임원식
    • 동력기계공학회지
    • /
    • 제6권2호
    • /
    • pp.73-81
    • /
    • 2002
  • In this study, electronically controlled automatic transmission adopted on a subcompact model in the market was modelled, and the driving performances of the transmission were simulated with the models. Kinetic and dynamic models of working components are established. The driving simulation program is developed with those models, and the various driving conditions are analyzed. With the results, the dynamic behaviour of the engine and the automatic transmission is easily understood. Especially, the transient performances of torque converter and clutches are deeply analyzed. Skipping the vehicle road test by using this analyzing tool, we can expect the cost down and the reduction of the development period of automatic transmission.

  • PDF