• Title/Summary/Keyword: Driving Fluid

Search Result 294, Processing Time 0.027 seconds

A Study on the Safely of Vibration Characteristics on the Various Configuration of Tube (튜브 형상에 따른 진동 특성의 안전성 연구)

  • 신귀수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2000
  • This paper studies the effect of vibrational characteristics of the various tubes analyzed though experiment. By an experiment analysis we found out that the factor of system vibration is fluid-structure interaction of tube line. In fluid-filled tube system we study on the influence that the natural frequency of system and the frequency of wave motion produce upon through three experiments. Three experiments are modal test on each tube, FRF in continuous system, and vibrating tests when the system is driving on. From the results of the experimental studies, we obtained that the natural frequencies of system are very important than wave induced vibrations. and according to the variation of configuration, the frequencies are different each other. And we found that though fluid passed away through the tube, the tendency of system vibration level was similar with the mode shape at the simple system.

  • PDF

Development of Power Distribution Algorithm for Driving Efficiency Optimization of Independently Driven Vehicle (독립구동 인휠 전기자동차의 주행 효율 최적화를 위한 구동력 분배 알고리즘)

  • Park, J.H.;Song, H.W.;Jeong, H.U.;Park, C.H.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.16-21
    • /
    • 2014
  • The purpose of this paper is to construct a control algorithm for improving the driving efficiency of 4-wheel-drive in-wheel electric vehicles. The main parts of the vehicle were modeled and the input-output relations of signals were summarized using MATLAB/Simulink. A performance simulator for 4-wheel-drive in-wheel electric vehicles was developed based on the co-simulation environment with a commercial dynamic behavior analysis program called Carsim. Moreover, for improving the driving efficiency of vehicles, a torque distribution algorithm, which distributes the torque to the front and rear wheels, was included in the performance simulator. The effectiveness of the torque distribution algorithm was validated by the SOC simulation using the FTP-75 driving cycle.

Validation of Semantic Segmentation Dataset for Autonomous Driving (승용자율주행을 위한 의미론적 분할 데이터셋 유효성 검증)

  • Gwak, Seoku;Na, Hoyong;Kim, Kyeong Su;Song, EunJi;Jeong, Seyoung;Lee, Kyewon;Jeong, Jihyun;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.104-109
    • /
    • 2022
  • For autonomous driving research using AI, datasets collected from road environments play an important role. In other countries, various datasets such as CityScapes, A2D2, and BDD have already been released, but datasets suitable for the domestic road environment still need to be provided. This paper analyzed and verified the dataset reflecting the Korean driving environment. In order to verify the training dataset, the class imbalance was confirmed by comparing the number of pixels and instances of the dataset. A similar A2D2 dataset was trained with the same deep learning model, ConvNeXt, to compare and verify the constructed dataset. IoU was compared for the same class between two datasets with ConvNeXt and mIoU was compared. In this paper, it was confirmed that the collected dataset reflecting the driving environment of Korea is suitable for learning.

Development and performance analysis of a crawler-based driving platform for upland farming (밭 농업용 무한궤도 기반 주행 플랫폼 개발 및 성능 분석)

  • Taek Jin Kim;Hyeon Ho Jeon;Md Abu Ayub Siddique;Jang Young Choi;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.100-106
    • /
    • 2023
  • We developed a crawler-based driving platform that can perform harvesting, transportation, pest control, and rotary operation by equipping it with various implements, and analyzed its performance. This single platform was developed to perform as pepper harvester, peanut harvester, and transporter with a 46-kW engine. A simulation model was developed to study the specifications of the platform, and the accuracy was also analyzed. The absolute percentage error ranged from 0.2 to 5.9%, which made it possible to predict the platform performance using simulation model. In T-test, both torque and speed on field and asphalt showed a significant difference (1%). Driving torque required differed depending on the nature of the field, and the speeds also changed based on soil load. The developed platform has the advantage of being equipped with a variety of working tools, expected to be used to harvest root crops in the future.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.

STUDY ON THE PERFORMANCE OF THE SHAPE OF THE AIR-LIQUID EJECTOR DIFFUSER (기체-액체 이젝터의 디퓨저 형상에 대한 연구)

  • Jang, Jin-Woo;Sin, Won-Hyeop;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6412-6418
    • /
    • 2014
  • This paper performed a numerical study of an air-liquid ejector. An ejector is a fluid-transportation device that spouts high-pressure fluid from driving pipes using the kinetic energy of the spouted fluid and increases the pressure through the exchange of momentum with the surrounding gases of the lower pressure. The air-liquid ejector was investigated through steady three-dimensional multiphase CFD analysis using commercial software ANSYS-CFX 14.0. Water as the primary fluid is driven through the driving nozzle and air is ejected as the second gas instead of ozone in real applications. The difference in performance according to the shape of the diffuser of the ejector was examined. The results provide deep insight into the influence of various factors on the performance of the air-liquid ejector. The proposed numerical model will be very helpful for further design optimization of the air-liquid ejectors.

Failure Study for Tribological Characteristic Analysis of a Clutch System in Passenger Cars (승용차 클러치 시스템의 트라이볼로지 특성에 관련한 고장사례 연구)

  • Kim Chung-Kyun;Lee Il-Kwon
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.196-202
    • /
    • 2006
  • This paper presents a case study on the tribological failure analysis of a clutch system for a manual transmission car. The clutch systems are composed of clutch disk, clutch pressure plate, flywheel rubbing surface, coil and diaphragm springs, release bearing and lever, clutch spline and shaft. The purpose of a clutch system is to transmit and disconnect the driving power of engines by frictional farce from a rubbing surface of a flywheel to a clutch disk and clutch pressure plate with a minimum power loss. In this study, many tribological failure cases based on the wear phenomena and thermal distortions have been presented, which are collected from the car repair shop and maintenance center. The triboiogicai failures are mostly come from the driving conditions, overloading of a car, and especially driving style and personal habit of a car driver.

Driving Safety Analysis for vehicles Against High Wind on the Bridges Using Extreme Value Statistics (극치통계분석을 이용한 교량상판 풍하중에 대한 차량주행 안전도 평가)

  • Chung, Jee-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.112-117
    • /
    • 2010
  • This study presents a methodology to evaluate the driving safety of vehicles against localized high wind on the roads over the valleys or along the coasts. Risk level for vehicle accident is derived from the side slip caused by cross wind, and then safety criteria based on reliability for driving stability are defined. The level of safety is classified according to probability of exceeding against wind speed using the concept of extreme value statistics. To attain the safety level of vehicle on bridges, numerical simulations using Computational Fluid Dynamics(CFD) are performed. Based on this result, risk reduction and quality improvement is expected through analysis for each alternative in bridges design, construction and operation & maintenance stage with proposed process

Optimal Design Analysis of Link-Mechanism and Development of Control Performance Estimation Program for Unbalanced Heavy-Loaded Drive System (구동 링크기구 최적설계 분석 및 대부하 구동제어 성능추정 프로그램 개발)

  • Choi, Keun-Kug;Lee, Man-Hyung;Ahn, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.7-13
    • /
    • 1999
  • The unbalanced heavy-loaded elevation-driving system is composed of link-mechanism, hydraulic cylinder and compensator for the static unbalanced moment of the load. Control and compensation of elevation-driving system is very difficult because these mechanisms imply highly nonlinear properties due to hydraulic fluid characteristics and mechanical rotation of link-mechanism. In this study, through the analysis of the link-mechanism, the optimal design of the link-mechanism is suggested. Also to estimate the control performance of the unbalanced, heavy-loaded servo-controlled system, modeling and simulation of nonlinear system are carried out. To prove the validity of performance estimation program, simulation results are compared with the experimental results. Both results are similar, therefore this program will be helpful to study the improvement of the system control performance.

  • PDF

Investigation of the Driving Frequency Effect on the RF-Driven Atmospheric Pressure Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Jung Yeol;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.74-78
    • /
    • 2017
  • The discharge characteristics of the radio frequency (RF) surface dielectric barrier discharge have been simulated for the investigation of the ratio of the ion transit time to the RF period. From one-dimensional particle-in-cell (PIC) simulation for a planar dielectric barrier discharge (DBD), it was observed that the high-frequency driving voltage confines the ions in the plasma because of a shorter RF period than the ion transit time. For two-dimensional surface dielectric barrier discharges, a fluid simulation is performed to investigate the characteristics of RF discharges from 1 MHz to 40 MHz. The ratio of the peak density to the average density decreases with the increasing frequency, and the spatiotemporal discharge patterns change abruptly with the change in the ratio of ion transit time to the RF period.