• Title/Summary/Keyword: Driving Dynamic Characteristics

Search Result 349, Processing Time 0.027 seconds

Evaluation on the Driving Characteristics of a Precise Actuator Using Piezoelectric Elements (압전소자를 이용한 정밀 액츄에이터의 구동특성 평가)

  • Kim, S.C.;Kim, S.H.;Kwak, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.45-52
    • /
    • 1995
  • A prototype of a linear piezoelectric actuator is developed and its dynamic behaviors are investigated. The actuator consists of a driving tip with two stacked piezoelectric elements and a slider. Dynamic characteristics of slider over various vibration lici of the driving tip and changes of normal force acting on the vibratory tip are examined through experiments. The moving direction of slider can be controlled by changing a phase angle between input signals applied to piezoelectric elements. A change of phase difference between input signals also have a great influence on the vibration locus of driving tip. Changes of slider motion due to different vibration loci are examined by experiments.

  • PDF

Dynamic Stress/Strain Measurement and Analysis of the Aluminum Alloy Road Wheel through F1 Circuit Ultimate Driving Test (F1 서킷 극한주행시험을 통한 알루미늄 알로이 휠의 동응력/변형률 계측 및 분석)

  • Lee, Chang Soo;Park, Cheol Soon;Park, Hyung Bae;Jung, Sung Pil;Chung, Won Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.612-617
    • /
    • 2014
  • It is generally known that the automotive road wheel involves the non-proportional multiaxial loading condition, therefore the measuring dynamic stress and strain in driving state is very important to predict an endurance characteristic of the automotive road wheel. In this study, the ultimate driving test using F1 circuit with respect to 2 kinds of velocity conditions have been carried out in order to measure dynamic stress, strain of the wheel and acceleration of a vehicle. Based on the measured results, the characteristics of dynamic stress generation have been analyzed, and factors which have effect on the dynamic stress generation have been studied.

  • PDF

A Study on Analytical Method of Driving Characteristics of Carrier Aircraft Towing Vehicles Using Dynamic Simulation (동역학 시뮬레이션을 이용한 함재기 견인차량의 주행특성 분석 기법에 관한 연구)

  • Jaewon Oh;Sa Young Hong;Sup Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.288-295
    • /
    • 2023
  • This paper deals with the dynamic simulation method for analysis of driving characteristics of aircraft and towing vehicles (TUG) on carrier vessel in wave motions. For prompt deployment in a short period of time, optimization of the movement of carrier aircraft becomes a major issue. In this regards, strategy studies using real-time simulation technology and optimal decision-making technologies are being conducted. In the present work, the dynamic characteristics of carrier aircraft and TUG connected by towbar or towbarless mechanism were investigated by means of multi-body dynamics model. Meanwhile, for real-time simulation, Dugoff's model of tire loads calculation was adopted. Through comparative analysis it was confirmed that the similarity of results between the multi-body contact model and the tire load calculation model can be achieved by coefficients tuning.

Variation of the Discharge Characteristics in single-sustainer Driving of an AC PDP

  • Kim, Joong-Kyun;Jung, Hae-Yoon
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.154-159
    • /
    • 2010
  • Single-sustainer driving is an AC PDP driving scheme to reduce the circuitry by maintaining the sustain electrode at ground level. To date, however, the research on the discharge characteristics in such driving scheme is insufficient. In this study, the panel performance and discharge characteristics of the single-sustainer driving scheme were observed while varying the address electrode condition. In single-sustainer driving, the address electrode is strongly involved in the sustain discharge when the former is maintained at ground level, and the dependence of the luminous efficacy on the sustain voltage is different from that in the conventional driving scheme. The dependence of the luminous efficacy on the sustain voltage appeared similar, however, to that in the conventional driving scheme when the address electrode was floated in single-sustainer driving. In the investigation of the temporal evolution of the sustain discharge using an IICCD camera, it was found that the sustain discharge in single-sustainer driving with a floating address electrode is similar to that in the conventional driving scheme, and the strong plasma formation region was located in the vicinity of the MgO surface, which seems to be related to the lifetime of a PDP with single-sustainer driving. In the investigation of the operation characteristics, the PDP that was operated with a floated address electrode showed a narrower dynamic operation margin, but a longer lifetime was expected.

A Study on Vibration Characteristics Caused by Backlash of Gearbox in Escalator with Chain-sprocket Drive Mechanism (체인-스프라켓 메커니즘을 갖는 에스컬레이터에서 기어박스 백래시로 인한 이상진동에 관한 연구)

  • 권이석;홍성욱;박노길
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.341-347
    • /
    • 2003
  • This paper presents an improved escalator dynamic model so as to reflect the experimental observation on the pseudo-resonance affected by load applied. The experimental evidence reveals that backlash on gearbox as well as sag of driving Chain are most critical factors to the pseudo-resonance in escalators. The dynamic model effectively reflects vibration characteristics measured in real escalators with respect to different conditions of driving chain and the number of passengers. For validation of the dynamic model developed. numerical results from the model are compared with experimental results. The developed model and its simulation results are used rigorously for the design of escalator systems in enhancing the ride comfort.

DESIGN PROGRAM FOR THE KINEMATIC AND DYNAMIC CHARACTERISTICS OF THE BUS DOOR MECHANISM

  • KWON S.-J.;SUH M.-W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.403-411
    • /
    • 2005
  • The bus is regarded as one of the most frequently used public transportation systems, the research and development on driving stability, safety, and convenience for drivers and passengers has tremendously increased in recent days. This paper investigated the design of the bus door mechanism composed of an actuator (or motor) and linkages. The bus door mechanism is divided into many types according to the coupling of the linkages and the driving system. The mathematical models of all types of door mechanism have been constructed for computer simulation. To design the bus door mechanism, we developed a simulation program, which automates the kinematic and dynamic analysis according to the input parameters of each linkage and the driving system. Using this program, we investigated the design parameters that affect the kinematic and dynamic characteristics of the bus door mechanism under various simulation conditions. In addition, simple examples are examined to validate the developed program.

A study on vibration characteristics caused by backlash of gearbox in escalator with chain-sprocket drive mechanism (체인-스프라켓 메커니즘을 갖는 에스컬레이터에서 기어박스 백래시로 인한 이상진동에 관한 연구)

  • Kwon, Yi-Sug;Park, Seon-Ryong;Suh, Jong-Ho;Hong, Seong-Wook;Park, No-Gill
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents an improved escalator dynamic model so as to reflect the experimental observation on the pseudo-resonance affected by load applied. The experimental evidence reveals that backlash of gearbox as well as sag of driving chain are most critical factors to the pseudo-resonance in escalators. The dynamic model effectively reflects vibration characteristics measured in real escalators with respect to different conditions of driving chain and the number of passengers. For validation of the dynamic model developed, numerical results from the model are compared with experimental results. The developed model and its simulation results are used rigorously for the design of escalator systems in enhancing the ride comfort.

  • PDF

Dynamic Analysis of Driving Mechanism for ALTS with High-Speed Transfer Characteristics (고속 전환특성을 가진 자동부하전환 개폐기의 구동메커니즘의 동적 해석)

  • Chung, Won-Sun;Kwon, Byung-Hee;Ahn, Kil-Young;Oh, Il-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1530-1535
    • /
    • 2003
  • The automatic load transfer switch (ALTS) typically automatically transfers electrical loads from a normal electrical power source to an emergency electrical power source upon reduction or loss of normal power source voltage. It can also automatically re-transfer the load to the normal power source when the normal voltage has been restored within acceptable limits. The transfer operation of ALTS is accomplished by a spring-driven linkage mechanism. In this paper we build a dynamic model of driving mechanism for ALTS using ADAMS and checked the characteristics of the transfer operation. Finally we performed a detailed design of the driving mechanism through results of analysis and confirmed it to satisfy design requirements.

  • PDF

Influence of driving methods on dynamic torque characteristic of high-speed permanent magnet synchronous motor with hall sensor (영구자석 동기기의 구동방식에 따른 토크특성 해석)

  • Jang, Seok-Myeong;Lee, Un-Ho;You, Dae-Joon;Han, Young-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.98-100
    • /
    • 2008
  • This paper deals with dynamic torque of PM Synchronous Motor (PMSM) according to driving method. The driving method is selected considering harmonic characteristics with the PMSM.

  • PDF

Improvement of Washout Algorithm for Vehicle Driving Simulator Using Vehicle Tilt Data and Its Evaluation (차량 기울기값을 이용한 차량 시a레이터용 워시아웃 알고리즘에 대한 개선 및 평가)

  • Moon, Young-Geun;Kim, Moon-Sik;Kim, Kyung-Dal;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.823-830
    • /
    • 2009
  • For developing automotive parts and telematics devices the real car test often shows limitation because it needs high cost, much time and has the possibility of the accident. Therefore, a Vehicle Driving Simulator (VDS) instead of the real-car test has been used by some automotive manufactures, research centers, and universities. The VDS is a virtual reality device which makes a human being feel as if one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, a washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, a classical washout algorithm contains several problems such as time delay and generation of wrong motion signal caused by characteristics of filters. Specially, the classical washout algorithm has the simulator sickness when driver hardly turns brakes and accelerates the VDS. In this paper, a new washout algorithm is developed to enhance the motion sensitivity and improve the simulator sickness by using the vehicle tilt signal which is generated in the real time vehicle dynamic model.