• Title/Summary/Keyword: Driver interface

Search Result 272, Processing Time 0.033 seconds

Device Driver Development of LSM Using General Purpose PCI I/O Board

  • Kim, Hyun-Joong;Lee, Sang-Min;Ham, Woon-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1684-1688
    • /
    • 2003
  • In this paper, position and speed control algorithm of LSM (Linear Stepping Motor) using general-purpose PCI I/O board is discussed. The main purpose of this paper is to show that LSM controller can be established on the non real time operating system such as Microsoft Win2000 under the assumption that thread priority strategy is well designed. We can guarantee sampling interval less than 5msec based on the Pentium III microprocessor. Therefore this kind of LSM controller development environment makes shorten the prior research period needed to verify the validness of the proposed control strategy. We also introduce the tool of the real-time windows target system of matlab, which also makes shorten the prior research period. The main focus of this paper is on developing general purpose NT device driver which can drive the general purpose PCI board and applying it for implementing the hardware interface for 2- axis linear stepping motor control. From the experimental results show that the developed LSM controller guarantee 2 micrometer resolution in position control with 10cm/sec moving speed

  • PDF

A study for the development of Blind-Pointing Method to extract drivers' cognitive map on Instrument Panel (자동차 Instrument Panel 의 운전자 인지지도 추출을 위한 Blind-Pointing Method 개발에 관한 연구)

  • Yu, Seung-Dong;Park, Peom
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.1
    • /
    • pp.9-16
    • /
    • 2000
  • In these days, the interior interface design for vehicle drivers was recognized as important affairs. Thereby, many studies are being performed for this. These studies emphasize the physical factors and usability of human, but those for the cognitive factors are not enough. Cognitive factors are very important elements to determine the drivers' performance. In this study, it was studied about the method to extract a driver's cognitive map on IP(Instrument Panel) in dynamic situation, and BPM(Blind-Pointing Method) was proposed for this. The BPM is the method to extract a cognitive map by subject's pointing action under the blinded condition. The experiment was conducted to validate compatibility of BPM as the method to extract a cognitive map. In the experiment, subjects were divided in two groups, the first group of subjects has their own vehicle and driver license, and the second group of subjects doesn't have own vehicle but has driver license. The result shows that the IP form of cognitive map is not different between two groups, and BPM is the compatible method to extract a cognitive map.

  • PDF

Simulator-Based Mental Workload Assessment of the In-Vehicle Navigation System Driver Using Revision of NASA-TLX (항법장치 simulator 기반의 RNASA-TLX 를 이용한 항법장치 운전자 mental workload 평가에 관한 연구)

  • Cha, Doo-Won;Park, Peom
    • IE interfaces
    • /
    • v.10 no.1
    • /
    • pp.145-154
    • /
    • 1997
  • In developing the HMI(Human-Machine Interface) evaluation system for the IVNS(In-Vehicle Navigation System), design guidelines and evaluation methods are the most crucial problems for its use and efficiency. As the part of this system, focused on the final product of the database, subjective mental workload assessment is seriously considered to evaluate the driver's own driving task using the IVNS. This paper suggests the methodology for the ergonomic assessment of the IVNS that corresponds to the subjective measurement of the driver's mental workload by rating his or her own driving task. For this approach, Revision of NASA-Task Load Index(RNASA-TLX) was developed which translated and revised the version of NASA-TLX that is generally accepted an efficient and powerful method for evaluating the in-vehicle information systems. To verify the RNASA-TLX, an experiment was conducted in a real road situation, because the result of the laboratory approach is uncertain and has the differences from the real road test.

  • PDF

Selection of the human factors design variables of in-vehicle navigation system (자동차 항법장치의 HMI 설계변수 선정에 관한 연구)

  • Cha, Doo-Won;Park, Peom;Lee, Seung-Whan;Kim, Byung-Woo
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.185-190
    • /
    • 1996
  • Navigation system is regarded as the interface border line between the Intelligent Transportation Systems (ITS) and the driver as the prospective information provider of the ATIS (Advanced Traveler Information System). Following theory, if the navigation system appropriately designed and utilized, that can maximize the transport efficiency, contribute to improvements of the environments and road safety. To accomplish these dinds of objectives of the navigation system use, human factors plays an important roles specially focused on the driver's safety, performance and system usability. Because the effectiveness of the system depends on the acceptance of the system, and the extent to which the system conforms to driver physical and cognitive limitations and capabilities. Therefore, the ergonomic design vaniables must be seriously selected and reflected in early design step for more effective and appreciate product design. As the first step of this aim, this study selected and categorized the human factors design variables of the navigation system.

  • PDF

New Vehicle Collision Warning Algorithm Based On Fuzzy Logic (퍼지 논리에 기반한 차량 충돌 경보 알고리듬)

  • 김선호;오세영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.233-247
    • /
    • 1999
  • Traffic accidents are normally caused by late or faulty judgements due to the driver's inaccurate estimation of the distance, velocity, and acceleration from the surrounding vehicles as well as his carelessness or inattention. Thus, the development of collision avoidance systems is motivated by their great potential for increased vehicle safety. A typical collision avoidance system consists of the forward-looking sensor, the criteria for activation of collision warming and avoidance, the collision avoidance maneuvers, and the user interface. This thesis is concerned with the development of a collision warning algorithm in which the driver is warned of approaching collision with the visual and/or the audible signals . The warning algorithm based on fuzzy logic is presented here based on new warning criteria. It has been newly derived from the conventional warning equation by adding a new input variable of the required deceleration to avoid collision. The algorithm is also able to adapt to the individual driver's taste along with the different road conditions by externally controlling the warning intensity. Finally , the proposed algorithm has been validated using computer simulation.

  • PDF

Implementation of Feedback Controller on the Servo System (교류서보계의 궤환제어 구현)

  • Chun, Sam-Suk;Park, Chan-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.719-720
    • /
    • 2006
  • In the mechanical system, optimization of motion control is very essential in the aspect of automation technique progress. In the servo system, the function of controller is very important but most of the controllers have played only the role of pulse generator because the controller with main function is very expensive. In this thesis, the system was composed of PC, commonly used driver AC servo motor and a produced control board. The PC transmit a gain, a locus data to a driver and controller. At the same time, it converts imformation from the controller and convert them into data and offer an output with graph. The role of a controller is to trasmit a locus data to a driver and counting the pulse on the phase of an encoder to the PC. We have performed the experiment in order to confirm with variable PID parameter capable of the optimization of gain tuning with the counting of feedback control sensor signal with regard to the external interface into the system, such as torque. Based on the experiment result, we have confirmed as follows: First, it was confirmed that we could easily input control factors P.I Gain, constant $K_P,\;K_I$ into PC. Second, not only pulse generator function was possible, but with this pulse it was also possible to count using software with PIC chip. And third, using the multi-purpose PIC micro chip, simple operation and the formation of small size AC Servo Controller was possible.

  • PDF

A Study on Pulse Wave Measurement System Based on USB Driver Transmission System (USB Driver 전송시스템 기반의 맥파 측정 시스템에 관한 연구)

  • Kim, E.G.;Park, M.K.;Han, S.S.;Huh, Y.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1914-1915
    • /
    • 2007
  • The period and strength of the pulse on the radial artery are important physiological factors, and they have been used to diagnosis in both Western and Eastern countries for a long time and has been developed as a unique method of diagnosis at each countries. Recently, there are a lot of systems which can give diagnosis information by recording the pulse wave and analyzing the characteristics of the pulse shape. This study describes the Pulse-Wave Measurement System which is able to measure the pulse wave signal using piezoresistive sensor and the pulse wave signal measured by the developed system is transmitted to a computer on the basis of the USB Driver. It has finally shown the the pulse wave signal measured by the sender is appeared to the host PC in real time. The Pulse-Wave Measurement System used the piezoresistive sensor to measure the pulse wave signal and the differential amplifier(AD620) to amplify the pulse wave signal which is small signal. And it used the ADC to convert analog to digital for the measured analog signal and the interface with a computer. It transmitted the measured pulse signal through USB transmission module to the host computer and Labview tool shows it. This Pulse-Wave measurement system will afford comvenience of detecting pulse wave to user related to oriental medicine.

  • PDF

The Design, Implementation, Demonstration of the Architecture, Service Framework, and Applications for a Connected Car

  • Kook, Joongjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.637-657
    • /
    • 2021
  • While the conventional vehicle's Head-Units played relatively simple roles (e.g., control of heating ventilation and air conditioning, the radio reception), they have been evolving into vehicle-driver interface with the advent of the concept of Connected Car on top of a rapid development of ICT technology. The Head-Unit is now successfully extended as an IVI (In Vehicle Infotainment) that can operate various functions on multimedia, navigation, information with regards to vehicle's parts (e.g. air pressure, oil gauge, etc.). In this paper, we propose a platform architecture for IVI devices required to achieve the goal as a connected car. Connected car platform (CoCaP) consists of vehicle selective gateway (VSG) for receiving and controlling data from major components of a vehicle, application framework including native and web APIs required to request VSG functionality from outside, and service framework for driver assistance. CoCaP is implemented using Tizen IVI and Android on hardware platforms manufactured for IVI such as Nexcom's VTC1010 and Freescale's i.MX6q/dl, respectively. For more practical verification, CoCaP platform was applied to an real-world finished vehicle. And it was confirmed the vehicle's main components could be controlled using various devices. In addition, by deriving several services for driver assistance and developing them based on CoCaP, this platform is expected to be available in various ways in connected car and ITS environments.

The Design of LVDS Driver with ESD protection device of low voltage triggering characteristics (저 전압 트리거형 ESD 보호소자를 탑재한 LVDS Driver 설계)

  • Yuk, Seung-Bum;Kim, Kui-Dong;Kwon, Jong-Ki;Koo, Yong-Seo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.805-808
    • /
    • 2005
  • In this study, the design of advanced LVDS(Low Voltage Differential Signaling) I/O interface circuit with new structural low triggering ESD(Electro-Static Discharge) protection circuit was investigated. Due to the differential transmission technique and low power consumption at same time. maximum transmission data ratio of designed LVDS transmitter was simulated to 5Gbps, Also, the LIGCSCR(Latch-up Immune Gate Coupled SCR)was designed. It consists of PLVTSCR (P-type Low Voltage Trigger SCR), control NMOS and RC network. The triggering voltage was simulated to 3.6V. And the latch-up characteristics were improved. Finally, we performed the layout high speed I/O interlace circuit with the low triggered ESD protection device in one-chip.

  • PDF

Development of Vehicle Oriented Black Box System Based on U-Healthcare and Human-Free Guard Functions

  • Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The vehicle oriented block box system based on the u-healthcare and the human-free guard functions is developed in this paper. We also suggested the design philosophies, ideas, and analyzed the performance of the suggested system. The developed vehicle oriented black box system has some characteristics such as; 1) detects the dangerous situation by ultrasonic sensor in advance, and stores the situation information of the neighborhood of the vehicle to the imbedded SD memory card if the dangerous situation may be occurred in the parked vehicle; 2) detects the present location and speed information of the vehicle by GPS receiver and 3-axes acceleration sensor, and stores the information to the SD memory card periodically if the vehicle is running; 3) measures the dioxide carbon in the vehicle inside using $CO_2$ sensor, and forces the ventilation motor of the vehicle to operate and maintains the driver's health if the measured level is more than standard health requirements; 4) provides the stored vehicle's operating information to the driver by GUI (Graphical User Interface) based touch LCD monitor.

  • PDF